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Distillation: A Survey
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Abstract—Although Deep neural networks (DNNs) have shown a strong capacity to solve large-scale problems in many areas, such
DNNs are hard to be deployed in real-world systems due to their voluminous parameters. To tackle this issue, Teacher-Student
architectures were proposed, where simple student networks with a few parameters can achieve comparable performance to deep
teacher networks with many parameters. Recently, Teacher-Student architectures have been effectively and widely embraced on
various knowledge distillation (KD) objectives, including knowledge compression, knowledge expansion, knowledge adaptation, and
knowledge enhancement. With the help of Teacher-Student architectures, current studies are able to achieve multiple distillation
objectives through lightweight and generalized student networks. Different from existing KD surveys that primarily focus on knowledge
compression, this survey first explores Teacher-Student architectures across multiple distillation objectives. This survey presents an
introduction to various knowledge representations and their corresponding optimization objectives. Additionally, we provide a
systematic overview of Teacher-Student architectures with representative learning algorithms and effective distillation schemes. This
survey also summarizes recent applications of Teacher-Student architectures across multiple purposes, including classification,
recognition, generation, ranking, and regression. Lastly, potential research directions in KD are investigated, focusing on architecture
design, knowledge quality, and theoretical studies of regression-based learning, respectively. Through this comprehensive survey,
industry practitioners and the academic community can gain valuable insights and guidelines for effectively designing, learning, and
applying Teacher-Student architectures on various distillation objectives.

Index Terms—Deep neural networks, knowledge distillation, knowledge learning, Teacher-Student architectures.
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1 INTRODUCTION

D EEP neural networks (DNNs) have witnessed much
success in several fields, such as Computer vision [1]

(CV), Communication systems [2], and Natural language
processing (NLP) [3], etc. Specifically, to satisfy the robust
performance in large-scale tasks, DNNs are generally over-
parameterized with complex architectures. However, such
cumbersome models, meanwhile, need a large amount of
training time and bring large computational costs, which
pose significant challenges to deploying these models on
edge devices and in real-time systems.

To accelerate the training process, Hinton et al. [4] first
propose Knowledge Distillation (KD) technique for training
lightweight models to achieve comparable performance to
deep models, which is achieved through compressing the
informative knowledge from a large and computationally
expensive model (i.e., teacher model) to a small and com-
putationally efficient model (i.e., student model). With such
the Teacher-Student architecture, the student model can be
trained under the supervision of the teacher model. During
the training of the student model, the student model not
only should predict ground truth labels as closely as pos-
sible but also should match softened label distributions of
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the teacher model. Consequently, the compressed student
model is able to obtain comparable performance to the
cumbersome teacher model and is computational-efficiently
deployed in real-time applications and edge devices.

In addition to knowledge compression, Teacher-Student ar-
chitectures, meanwhile, are effectively and widely embraced
on the other KD objectives, including knowledge expansion,
knowledge adaptation, and knowledge enhancement. With the
help of Teacher-Student architectures, we are able to achieve
multiple distillation objectives through effective and gener-
alized student networks. In knowledge expansion, with the
stronger model capacity and the complicated learning tasks,
student networks can learn the extended knowledge from
teacher networks, so that students are able to demonstrate
better performance and generalizability over teachers in
more complicated tasks [5, 6, 7]. To achieve the objective of
knowledge adaptation, student networks can be trained on one
or multiple target domains, with the adapted knowledge of
teacher networks built on source domains [8, 9]. In knowl-
edge enhancement, student networks can learn more general
feature representations under the supervision of specialized
teacher networks, so that such general student networks can
be effectively generalized in multiple tasks [10, 11].

With the recent advancements in Teacher-Student archi-
tectures, some studies have summarized the recent progress
of various distillation techniques with Teacher-Student ar-
chitectures. Specifically, Gou et al. [12] present a compre-
hensive KD survey mainly from the following perspectives:
knowledge representations, distillation schemes and algo-
rithms. Wang et al. [13] provide a systematic overview and
insight into model compression with Teacher-Student archi-
tectures in the vision field. Alkhulaifi et al. [14] summarize
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TABLE 1: The comparison between the existing KD surveys [12, 13, 14] and this survey.

Work Gou et al. [12] Wang et al. [13] Alkhulaifi et al. [14] Our survey

Distillation
objective

Knowledge compression Knowledge compression Knowledge compression

Knowledge compression
Knowledge expansion
Knowledge adaptation

Knowledge enhancement

Knowledge
representation

Response, Intermediate,
Relation

Response, Intermediate,
Mutual information

Response, Intermediate
Response, Intermediate,

Relation, Mutual information

Knowledge
optimization

✗ ✗ ✗
Huber loss, Triplet loss,

Information maximization, etc.

Application
purpose

Classification, Recognition Classification, Recognition Classification, Recognition
Classification, Recognition,

Generation, Ranking,
Regression

multiple metrics to evaluate distillation methods in terms of
reduction in model size and performance.

However, existing KD surveys [12, 13, 14] mainly fo-
cus on the Teacher-Student architectures for the objective
of knowledge compression, thereby calling for a com-
prehensive review of all the distillation objectives. More-
over, knowledge types can be summarized into three cate-
gories: response-based, intermediate, relation-based, and mutual
information-based representations. The knowledge optimiza-
tion objectives may vary depending on the specific knowl-
edge representation. However, existing surveys [12, 13, 14]
only provide a review of, at most, three knowledge repre-
sentations, lacking a comprehensive introduction to knowl-
edge optimization with various representations. Besides, the
existing works [12, 13, 14] primarily explain the applications
of Teacher-Student architectures in the domains of visual
recognition and NLP, suggesting that other tasks (i.e., gen-
eration, ranking, and regression) are also being discussed.

To this end, this survey provides a comprehensive and
insightful guideline about the Teacher-Student architectures
for KD. As shown in Fig. 1, the general taxonomy frame-
work of our survey, this survey first discusses Teacher-
Student architectures on multiple KD objectives, including
knowledge compression, knowledge expansion, knowledge adap-
tation, and knowledge enhancement. This survey provides a
detailed overview of multiple knowledge representations
(i.e., response-based, intermediate, relation-based, and mutual
information-based representations), and explores the knowl-
edge optimization objectives associated with each spe-
cific representation. Moreover, we systematically summarize
Teacher-Student architectures with multiple representative
learning algorithms (i.e., multi-teacher, graph-based, federated,
and cross-modal distillation), while introducing online distil-
lation and self-distillation schemes under the framework
of Teacher-Student architectures. The latest applications of
Teacher-Student architectures are also presented, providing
insights from various perspectives: classification, recognition,
generation, ranking, and regression purposes. Finally, we inves-
tigate the potential research directions of KD on Teacher-
Student architecture design, knowledge quality, and theo-
retical studies of regression-based learning, respectively.

Table 1 compares the prior works [12, 13, 14] with our
survey, summarizing the main contributions of this survey:

• We introduce a comprehensive review of Teacher-

Student architectures for multiple distillation objec-
tives, including knowledge compression, knowledge expan-
sion, knowledge adaptation, and knowledge enhancement.

• We provide an insightful review of multiple knowledge
representations and optimization objectives associated
with each specific representation.

• We summarize recent applications of Teacher-Student
architectures across various purposes, including classi-
fication, recognition, generation, ranking, and regression.

• We discuss promising research directions on KD, in-
cluding Teacher-Student architecture design, knowl-
edge quality, and theoretical studies in regression-based
learning.

The rest of the survey is organized as follows: Section 2
describes Teacher-Student architectures across multiple dis-
tillation objectives. Section 3 introduces knowledge repre-
sentations and optimization objectives. Section 4 and Sec-
tion 5 discuss Teacher-Student architectures with represen-
tative learning algorithms and distillation schemes, respec-
tively. Section 6 summarizes recent applications of Teacher-
Student architectures across various purposes. The future
works and conclusions are eventually drawn in Section 7
and Section 8, respectively.

2 DISTILLATION OBJECTIVES

In this section, we will introduce Teacher-Student architec-
tures for multiple distillation objectives, including knowl-
edge compression, knowledge enhancement, knowledge
adaptation, and knowledge expansion.

2.1 Knowledge Compression
Knowledge compression focuses on training a student
model, using predictions from a larger-sized teacher model.
The purpose of knowledge compression is to achieve a
compact student model while maintaining comparable or
slightly reduced performance with a teacher model.

Hinton et al. [4] first propose to distill knowledge from
multiple models to a single student model for the task of
model compression and transfer learning. Tang et al. [15]
compress BERT [16] to a much light-weight Bi-LSTM [17]
for the task of natural language processing. Romero et
al. [18] suggest that the success of deep neural nets is largely
attributed to the deep hierarch. Thus they propose to com-
press wide (a large number of neurons in each layer) and
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Fig. 1: The general taxonomy framework of this survey.

deep teacher models into much narrower (fewer neurons
in each layer) and deeper student models. Yim et al. [19],
design the architectures of students and teachers as a N -
part module, where each module contains various numbers
of convolutional layers. Student models generally have a
simpler design, and the task for students is to learn each
layer output of the teacher.

In addition, Wang et al. [20] argue that the vanilla KD [4]
is hard for students to learn all knowledge from teach-
ers, and thus students normally show worse performance
compared to the teacher. Hence, the authors [20] adopt
Generative adversarial networks (GANs) [21] to simulate
the compression process. The generator (student model
with fewer parameters) learns the distribution of the data,
whereas the discriminator (teacher model with more param-
eters) learns to differentiate if the input is from a student or
real. Tang et al. [22] propose to distill complicated models in
information retrieval or recommendation systems where the
model predicts the top K relevant information when a query
is given. Zhang et al. [23] utilize multiple students (without
teachers) to learn from each other during training. Furlane
et al. [24] propose a novel ensemble learning approach,
where students and teachers share the same architecture.
The Nth student is responsible to train the N + 1th student.
Predictions are averaged in the end.

2.2 Knowledge Expansion
Instead of compressing knowledge from larger teacher net-
works into smaller student networks, knowledge expan-
sion focuses on building student networks with stronger
learning capacity and performance than teacher networks.
The knowledge can be expanded in multiple approaches,
such as increasing the size of the student network, data
augmentation, and introducing random noise to student
networks, among others. These strategies are able to en-
hance the robustness and generalizability of the student
network, contributing to their improved performance in
diverse scenarios.

Specifically, Xie et al. [5] initially propose the concept
of knowledge expansion, which aims to use a teacher
model to train a student model with a larger capacity of
parameters. Xie et al. [5] initially train the teacher model
on ImageNet [25], then incorporate a privately collected
unlabelled dataset, and use the teacher model’s prediction
as pseudo ground truth to train a larger student model.
With the enhanced data augmentation and the additional
self-labeled data, the larger student model can outperform
the teacher model through an iterative self-training strategy.
Sohn et al. [6] adopt a similar training strategy for the task
of object detection, which utilizes the pre-trained teacher
model to generate pseudo labels for the unlabelled images.
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(a) Knowledge compression. (b) Knowledge expansion. (c) Knowledge adaptation. (d) Knowledge enhancement.

Fig. 2: Teacher-Student architectures with the various distillation objectives.

The student model is trained with strong data augmentation
on the pseudo-labeled dataset. Wang et al. [7] argue that
forcing student models to learn the noisy pseudo labels from
teachers may cause noisy label overfitting. They instead
propose a curriculum learning strategy, where the student
models learn easy samples first, then proceed to hard sam-
ples. The criteria for easiness are based on the confidence
score from the region proposal network.

2.3 Knowledge Adaptation
To fulfill the objective of knowledge adaptation, we are
expected to train well-generalized student networks on one
or multiple unknown target domains by leveraging the
adapted knowledge from teacher networks constructed on
similar source domains.

In the work of [8], teacher models monitor students’
learning progress and decide which task each student
should be trained on. In general, a student should be
trained on the task where he gains the most performance
improvement. To prevent Catastrophic Forgetting [26], stu-
dents should be trained on tasks where the performance
drops. Tsai et al. [27] adopt a novel teacher-student learning
scheme by incorporating GANs [21] into the training. The
authors [27] perform supervised segmentation tasks on the
source images with labels, and then use the trained model
to generate predictions for both source and target images.
Lastly, they feed both predictions to a teacher model (i.e.,
discriminator). If a teacher model is incapable of differentiat-
ing which domain the prediction is from, the trained model
has successfully transferred the knowledge from the source
domain to the target domain. Hoffman et al. [28] introduce
CycleGAN [29] to align source domain images with the tar-
get domain in an unsupervised approach. Then, they further
use the aligned source images along with target images to
join the adversarial training similar to [27] where the dis-
criminator is treated as the teacher network. Furthermore,
Li et al. [9] extend the work of [28] through a bi-directional
learning scheme, where the adversarial training can be in
turn used to promote the training of CycleGAN [29].

2.4 Knowledge Enhancement
Despite the effectiveness of the Teacher-Student training
paradigm in various domains, adapting Teacher-Student
architectures to a multi-task context still remains challeng-
ing. Therefore, the objective of knowledge enhancement is
to train student networks with more generalized feature
representations under the guidance of specialized teacher
networks. This enables the general student networks to con-
sistently exhibit robust performance across multiple tasks.

Ghiasi et al [10] propose a multi-task self-training
(MuST) strategy which uses multiple independent teacher

models to train one multi-task student model. In particular,
they adopt four teacher models, each responsible for clas-
sification, detection, segmentation, and depth estimation on
four different datasets. After training, these teacher models
are used to generate four types of pseudo labels for much
larger datasets. The student model is then trained on the
dataset with four types of pseudo labels. Yang et al. [11]
propose a cross-task framework consisting of three mod-
ules: 1) task augmentation: ranking fine-grained cross-tasks
through an auxiliary loss. 2) distillation: sharing ranked
knowledge representation across tasks to enforce consis-
tency. 3) Teacher-Student training: end-to-end training to
improve the generalized representation of distillation.

2.5 Comparison Analysis

In summary, we compare the aforementioned distillation
objectives as shown in Fig. 2 and Table 1 of the supple-
mentary material. Specifically, Fig. 2 shows Teacher-Student
architecture with each specific objective. Knowledge compres-
sion aims to train a compact student network (with fewer
parameters) by distilling the informative knowledge from
a large teacher network. The student network can signifi-
cantly reduce computational costs compared to teacher net-
works, while achieving comparable performance. In knowl-
edge expansion, student networks are expected to surpass the
performance and generalization capabilities of teacher net-
works by enriching the distilled knowledge from teachers.
To expand knowledge, student networks can be trained in a
more complex environment, such as increasing the network
size, and introducing random noise, among others. Through
these approaches, student networks can exhibit robust per-
formance across diverse and intricate scenarios, ultimately
outperforming their teacher networks. Knowledge adaptation
focuses on training well-generalized student networks on
one unknown target domain, with the adapted knowledge
from teacher networks built on similar source domains.
Given that each teacher network is constructed in a specific
task-oriented environment, knowledge enhancement aims to
train one generalized student network that simultaneously
exhibits strong performance across multiple tasks, which is
achieved by integrating task-specific knowledge from each
unique teacher network.

In addition, Table 1 of the supplementary material com-
pares the distillation objectives from multiple perspectives:
knowledge representation, distillation scheme, student size
(over teacher), and teacher number. It is observed that
knowledge can be constructed with various representa-
tions: response (e.g., logits [4]), intermediate (e.g., feature
maps [18]), relation (e.g., sample relations [30]), and mu-
tual information (e.g., Kernel-based information flow [31]),
which will be detailedly discussed in Section 3. The student
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networks can be trained using diverse distillation schemes
among all the objectives. In self-distillation, the roles of stu-
dent and teacher networks are dynamic during the iterative
learning process, which indicates that student and teacher
networks can be exchanged or student networks are able
to learn the knowledge from themselves (without teacher
networks). The detailed review of distillation schemes will
be provided in Section 5. Furthermore, since the objective
of knowledge compression is to construct compact student
networks, it is important to note that the size of student
networks is smaller than that of teacher networks. The
student networks can be designed with a larger or identical
size to the teacher networks in the works [5, 6, 7], providing
feasible approaches for knowlegde expansion. To obtain well-
generalized student networks in knowledge enhancement,
multiple teacher networks are constructed across diverse
scenarios. The introduction of multi-teacher distillation will
be summarized in Section 4.

We further report the classification performance and
computational efficiency of different methods across the
multiple distillation objectives in Table 2 and Table 3
of the supplementary material, respectively. By acquiring
the distilled knowledge from teacher networks, lightweight
student networks are trained in a computationally efficient
manner, while consistently demonstrating effective perfor-
mance across various datasets for all the distillation ob-
jectives. Notably, CIFAR100 and CIFAR10 datasets [32] are
commonly employed for evaluation purposes. Compared to
the vanilla KD [4], which solely relies on logits as knowl-
edge, FitNet [18] introduces intermediate feature maps as
additional knowledge, leading to an improved classification
accuracy of 0.26%. This suggests the advantage of incor-
porating intermediate feature maps in knowledge compres-
sion. The computational cost can be significantly reduced,
particularly when multiple teacher networks are involved.
In both the hetero-architecture and homo-architecture de-
signs of teacher networks, student networks can consistently
exhibit strong performance across all the objectives.

3 KNOWLEDGE FORMULATION

In this section, we will not only explain multiple knowledge
representations during the knowledge construction, but also
summarize knowledge optimization objectives associated
with each specific knowledge representation.

3.1 Knowledge Construction

3.1.1 Response-Based Knowledge
The most straightforward knowledge representation is
response-based knowledge, which is constructed through
the final prediction of teacher networks. As explained in
the work of Hinton et al. [4], such final predictions of
teachers contain informative dark knowledge, which can be
generalized from a complicated teacher network to a small
student network.

The response-based knowledge can be specifically for-
mulated for different application tasks, thereby incorpo-
rating task-specific auxiliary knowledge, such as image
classification, pose estimation, object detection, and speech
recognition, among others. For example, the most common

response-based knowledge is represented as soft targets in
image classification [4, 5, 33, 34, 35, 36]. Denoting zTi as the
logit of teacher network for the i-th class, soft target is a
vector of the prediction probabilities of all classes, which is
calculated through a Softmax function as follows:

PT
i (zTi , τ) =

exp(zTi /τ)∑
j exp(z

T
j /τ)

, (1)

where PT
i is the soft prediction probability for the i-th class,

and τ is a temperature factor controlling the softness of
logits. By regressing such soft prediction probabilities of all
classes, the student network can be effectively trained with
informative supervision from teacher networks. Specifically,
Zhao et al. [36] further categorize the soft target into two
parts: (1) distilled knowledge on target class (i.e., TCKD)
concerning the “difficulty” of training samples, and (2) dis-
tilled knowledge on non-target class (i.e., NCKD) explaining
the reason why logit distillation works. The effectiveness
and flexibility of the distillation process can be improved
through a weighted sum of the two parts.

Considering that the soft-target-based knowledge cannot
represent the structural information in 2D image space,
confidence maps [37, 38, 39] and heatmaps [40, 41] are
commonly considered as the knowledge to be transferred
from teacher models in human pose estimation. Zhang et
al. [37] generate a confidence map mk for each single joint
k by centering a Gaussian kernel around the relevant pixel
position (xk, yk) as follows:

mk(x, y) =
1

2πσ2
exp

(−[(x− xk)
2 + (y − yk)

2]

2σ2

)
, (2)

where (x, y) denotes a pixel location and σ is s pre-fixed
spatial variance. With such the structural knowledge, the
student network is trained to align with the confidence map
predicted by the pre-trained teacher network. In the work
of Li et al. [40], pose estimation predicts a heatmap for each
human anatomical keypoint, indicating the keypoint loca-
tions as Gaussian peaks. Since pixel values on the heatmap
represent the probabilities of each pixel in the keypoint, Li
et al. [40] further transfer the pose structural knowledge
by minimizing the divergence between the probabilities of
pixels generated from the teacher and student network.

In object detection, bounding box regression is one
powerful method to adjust the location and size of input
proposals, which is critical to ensure precise detection per-
formance [42, 43, 44]. Thus, the bounding box is commonly
represented as response-based knowledge, which is con-
sidered as one primary target for students to learn from
teachers [45, 46, 47, 48]. For example, in addition to the
classification output, Chen et al. [45] also encourage the
student network to mimic the predicted bounding box of
the teacher network, serving as an upper bound for the stu-
dent’s performance. The teacher could potentially provide
misleading guidance to the student, due to the unbounded
nature of real-valued regression outputs. Thus, the student
is only allowed to match the regression outputs when the
error of the student is significantly larger than the teacher.

Besides, automatic speech recognition suffers from per-
formance degradation when a well-trained acoustic model
is applied in a new domain [49]. To tackle this issue,
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teacher-student architectures incorporate domain adapta-
tion to adapt a source-domain acoustic model to target-
domain speech, which transfers the source-domain knowl-
edge for the student built specifically on the target do-
main [50, 51, 52, 53, 54]. In the work of Li et al. [51], the
close-talk data is the source data xsrc inputting the teacher
network while the far-field data is the target data xtgt (i.e,
the input of the student network). The student network is
trained to minimize the KL divergence between the pos-
terior distributions of the teacher PT (s|xsrc) and student
PS(s|xtgt), which enables the student to achieve effective
generalization on both known and novel scenarios. Meng et
al. [50] further introduce a conditioned learning scheme, in
which the student network can criticize the response-based
knowledge provided by the teacher network. The student
considers the posterior distribution of the teacher as the
knowledge when the teacher’s prediction is correct, and
otherwise the ground truth label is regarded as the learning
target by the student.

3.1.2 Intermediate Knowledge
DNNs exhibit the strong capability to learn abstract and
invariant feature representations at intermediate layers [55],
which motivates the introduction of intermediate-level rep-
resentations as extended knowledge to guide the training of
the student network.

FitNet [18] is the first work to construct intermediate
knowledge through a hint layer, where the knowledge is
the intermediate output of such layer in a teacher net-
work. However, a linear mapping β is introduced to unify
different dimensions as a result of the dimension differ-
ence between the intermediate outputs of the teacher and
student networks. For knowledge distillation, the squared
Euclidean distance between hidden activations is employed.
The knowledge used by the authors [18], such as the input
feature and output feature of a residual block, is a Gram
matrix of feature mappings from two separate layers. The
student network’s weight initialization for future optimiza-
tion is based on the information that has been condensed.
The performance of the student network in various tasks,
according to the authors, can be enhanced by the knowl-
edge that has been condensed. Inspired by FitNet [18],
numerous studies encourage student networks to not only
learn response-based knowledge, but also to receive training
supervision with intermediate-layer feature representations
from teacher networks [39, 45]. Besides, activation and
gradient attention maps can be represented as the inter-
mediate knowledge in attention-based works [56, 57, 58].
The normalized sum of absolute or squared value mapping
determines the attention maps. Zagoruyko and Komodakis
[56] demonstrate that these attention maps include useful
information that can help convolutional neural network ar-
chitectures perform better. In order to create L2-normalized
feature embeddings of teacher network as knowledge, Kim
et al. [57] suggest an encoder with a convolutional structure.
It is encouraged for the student network to generate the
same compressed representation as the teacher network. As
a classification problem heavily depends on the construction
of decision boundaries among classes, Heo et al. [58] employ
the pattern of active outputs as knowledge. The teacher
network retains a lot of valuable information because the

pattern is extracted before the activation function. Prior to
the classification training, the student network is initialized
using the condensed knowledge.

Based on the observation that pair-wise activations
with semantically comparable inputs frequently produce
similar output patterns, the author of [58] employs the
L2-normalized outer products of pair-wise activations as
knowledge. As a result, while processing the same input
pairs, the student network will result in output patterns that
are similar to (or different from) those of the trained teacher
network. Through the teacher network, they also create
feature maps using a collection of samples. And consider
the structural knowledge contained within those feature
maps. The average Euclidean distance and cosine similarity
between grouped sample outputs define the structural infor-
mation, or distance metric. Before the knowledge distillation
process, both the teacher network and the student network
have been pre-trained. Anchor loss in metric learning is
used in the work of DarkRank [59] to formulate the in-
formation. The anchor loss increases the distance between
classes while reducing the distance within them. These
patterns of intra- and inter-class distance are employed as
knowledge. The hidden activations are also encoded by
the authors using the embedding layer. The knowledge
distillation process is optimized using the KL divergence
and MLE. A hybrid structure to direct the student network
is revealed by learning from several teacher networks. The
authors utilize triplet loss to extract intra- and inter-class
information as one knowledge and average the softened
outputs of several teacher networks as another knowledge.
The knowledge distillation loss is totaled as the ultimate loss
according to the voting approach of multiple teachers.

3.1.3 Relation-Based Knowledge

In addition to response-based and intermediate knowledge,
the correlations among samples are also valuable knowl-
edge for enhancing the performance of the student network,
since such relation-based knowledge can capture the struc-
tural information in the data embedding space [30, 60, 61, 62,
63]. Specifically, preserving the relations of final predictions
from the teacher network is sufficient and effective. the
correlations among samples are also valuable knowledge
for enhancing the performance of the student network, since
such relation-based knowledge can capture the structural in-
formation in the data embedding space. Instead of distilling
the exact prediction probability, Huang et al. [60] leverage
the Person correlation coefficient [64] to transfer the inter-
class relations (i.e., the relative ranking of predictions on
each sample) and the intra-class relations (i.e., the relative
ranking of predictions on each class) from the teacher to the
student. Park et al. [30] explore the relations among training
samples through distance-wise ψD(ti, tj) and angle-wise
ψA(ti, tj , tk) functions as follows:

ψD(ti, tj) =
1

µ
∥ti − tj∥2, (3)

ψA(ti, tj , tk) = cos∡titjtk = ⟨eij , ekj⟩, (4)

where ti is the final prediction output of the teacher network
on one sample, and µ is a normalization factor. ψD(ti, tj)
calculates the Euclidean distance between two samples in
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the output representation space. Given a triplet of samples,
ψA(ti, tj , tk) measures the angular relation formed by two
edges as follows:

eij =
ti − tj

∥ti − tj∥2
, ekj =

tk − tj
∥tk − tj∥2

. (5)

In addition to the final prediction output space, relation-
based knowledge can also be discovered by measuring
the correlations among samples in the intermediate feature
space, which promotes a comprehensive understanding of
the dependencies within samples. Peng et al. [61] introduce
the Gaussian RBF kernel-based function to capture the high-
order correlation between samples as follows:

k(fi, fj) = exp(−γ∥fi − fj∥2), (6)

≈
P∑

p=0

exp(−2γ)
(2γ)p

p!
(fi · f⊤j )p, (7)

which can be approximated by P -order Taylor series. fi and
fj are the feature representations captured from the teacher
network on two samples, and γ is a tunable parameter. Fur-
thermore, Yang et al. [62] capture the cross-image pair-wise
correlations among pixels, by the pixel similarity matrix (i.e.,
element-wise dot product computed by the Bilinear pool-
ing [65]) between the anchors and contrastive embeddings
for the teacher network. Liu et al. [63] model the instance
relation graph as the transferred knowledge, in which each
vertex represents one instance feature representation at the
intermediate layer and each edge is defined as the Euclidean
distance between the intermediate features of two instances.

3.1.4 Mutual Information-Based Knowledge
From the perspective of information theory, knowledge
transfer can be formulated as the maximization of the
mutual information between teacher and student networks.
Specifically, the mutual information between two random
variables (t, s) can be formulated as follows:

I(t; s) = H(t)−H(t|s), (8)
= −Et[log p(t)] + Et,s[log p(t|s)], (9)

where the entropy H(t) and the conditioned entropy H(t|s)
are derived from the joint distribution p(t, s). To this end,
I(t; s) can indicate the uncertainty reduction in the knowl-
edge of the teacher network encoded in the t-th layer when
the s-th layer of the student network is known.

Considering that the true distribution p(t, s) could be
unknown, Ahn et al. [66] propose a variational lower bound
for I(t; s) by introducing a variational distribution q(t|s)
approximating p(t|s):

I(t; s) = H(t) + Et,s[log p(t|s)], (10)
= H(t) + Et,s[log q(t|s)] + Es[DKL(p(t|s) ∥ q(t|s))],

(11)
≥ H(t) + Et,s[log q(t|s)], (12)

which aims to maximize such the variational lower
bound through the variational information maximization
scheme [67]. The Gaussian distribution with heteroscedastic
mean µ(·) and homoscedastic variance σ can be modelled
as q(t|s), where the relevant parameters are specified based

on the intermediate and logit layers of the teacher net-
work. To better retain sufficient and task-relevant knowl-
edge, Tian et al. [68] utilize the information bottleneck to
produce highly-represented encodings z w.r.t ground truth
labels y, namely the sufficiency I(z; y) of z for y. Through
equivalently maximizing the subtraction of conditional en-
tropy H(y|z) and H(y|v), the optimal representation can
be achieved with minimized superfluous information (i.e.,
task-irrelevant knowledge). To capture the structural knowl-
edge (i.e., high-order relations among sample representa-
tions), Zhu et al. [69] and Tian et al. [70] maximize the low
bound of mutual information between the anchor-teacher
relation and the anchor-student relation, thereby providing
a feasible solution in the contrastive learning. Shrivastava
et al. [71] propose three mutual information maximization
objectives between the teacher and student networks: (1)
global mutual information between the final representa-
tions, (2) local mutual information between region-specific
vectors extracted from an intermediate representation of
the student network and the final representation of the
teacher network, and (3) feature mutual information be-
tween region-consistent local vectors extracted from inter-
mediate representations.

In addition, Passalis et al. [31, 72] utilize the Quadratic
mutual information (QMI) [73], derived by replacing the KL
divergence with a quadratic divergence measure, to define
the information of teacher and student networks. Specifi-
cally, this paper [31] models the information flow path of
the teacher network as the progression of QMI between each
intermediate representation and training targets. The QMI is
further expressed as the conditional probability distribution:

p
(t,lt)
i|j =

K(x
(lt)
i ,x

(lt)
j )∑N

i=1,i̸=j K(x
(lt)
i ,x

(lt)
j )

∈ [0, 1], (13)

where x
(lt)
i denotes the representation extracted from the

l-th layer of the teacher network on the i-th sample, and
K(·) is the consine and T-student kernel functions. Besides,
Passalis et al. [72] extend QMI to information potentials us-
ing three probabilities V (t)

IN , V
(t)
ALL, and V

(t)
BTW , representing

the relations among different samples. VIN denotes the in-
class relations, and VALL denotes the relations between all
samples, while VBTW is the relation of each class against all
the other samples.

3.2 Knowledge Optimization
In knowledge optimization, the objective function of KD
can consist of three parts: regular cross-entropy (LCE)
term, Kullback–Leibler (KL) divergence (LKL) term, and
distance/angle-wise (LD) term. The generalized form of the
objective function of knowledge distillation is:

LKD = λ1LCE (ytrue, PS)+λ2LKL (P τ
T , P

τ
S )+λ3LD, (14)

where λ1 + λ2 + λ3 = 1. LCE refers to the cross-entropy
loss measuring the difference between the ground truth ytrue
and the student prediction PS . LKL refers to KL divergence
between the soft logits of teacher P τ

T and student P τ
S , where

τ is the temperature factor [18] of a Softmax function. LD

refers to distance-wise and angle-wise functions to optimize
the other response-based knowledge from teacher networks.
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Table 4 of the supplementary material summarizes the
optimization objectives with different knowledge represen-
tations. In the response-based knowledge, student networks
are commonly trained to learn the soft logits from teacher
networks and the ground truths by minimizing LKL and
LCE [4, 35, 74, 75, 76, 77]. Besides, L1 and L2 distance func-
tions are represented as LD to optimize the other response-
based knowledge (i.e., confidence maps [37], heatmaps [40],
and bounding boxes [46, 48]) as follows:

L1 = ∥dT − dS∥ , (15)

L2 = ∥dT − dS∥22 , (16)

where dT and dS denote the knowledge to be measured
from teacher and student networks. The L1 and L2 func-
tions are also utilized to calculate the distance between the
feature maps and attention maps from teacher and student
networks [18, 45, 56, 57, 78, 79]. In addition to L2 function,
Aguilar et al. [80] also minimize the cosine similarity loss to
learn the attention maps of the hidden layers from teachers:

Lcos = 1− cos(dT ,dS), (17)

= 1− dT · dS

∥dT ∥ ∥dS∥
. (18)

To learn the structural knowledge among samples, Park
et al. [30] and Liu et al. [81] denote the Huber loss as LD :

LHuber =

{
1
2 (dT − dS)

2 for |dT − dS | ≤ 1,

|dT − dS | − 1
2 otherwise,

(19)

where dT and dS can be distance-wise and angle-wise
metric (e.g., Euclidean distance and cosine similarity) to
measure the structural relations among different samples.
Given a triplet (xi,x

+
i ,x

−
i ), where xi is the anchor point

and x+
i has smaller distance ψT

D(xi,x
+
i ) with xi than that

ψT
D(xi,x

−
i ) of x−

i according to the predictions from the
teacher network, You et al. [82] adopt the triplet loss to learn
such the distance-wise sample relations from the teacher to
the student:

Ltriplet = max(0, ψT
D(xi,x

+
i )− ψT

D(xi,x
−
i ) + δ), (20)

where δ > 0 is a pre-defined small number to prevent
the trivial solution. From the perspective of information-
theoretic criteria, the studies of Ahn et al. [66], Tian et al. [70]
and Shrivastava et al. [71] maximize the KL-based mutual
information between student and teacher representations
according to Eqn. (12). To generate highly-represented fea-
ture embeddings, Tian et al. [68] conduct variational mutual
learning through Jenson-Shannon divergence (JSD) as:

LJSD = Ev1,v2Ez1,z2 [DJS [p(y1|z1) ∥ p(y2|z2)], (21)

where vi ∈ V is an observation of input samples, and zi ∈ Z
is an intermediate representation from the teacher network.
p(y1|z1) and p(y2|z2) denote the predicted distributions on
various samples.

4 DISTILLATION WITH REPRESENTATIVE LEARN-
ING ALGORITHMS

In this section, we will introduce distillation with multiple
representative learning algorithms under the framework of
Teacher-Student architectures.

4.1 Multi-Teacher Distillation

In the classic single teacher-based architecture, one student
network is trained to match the ground truth as well
as the transferred knowledge from one teacher network
(e.g., soft logits and intermediate feature embeddings). For
example, MetaDistill [83] improves the knowledge trans-
mission ability of a teacher network using meta-learning.
Specifically, they introduce a pilot update mechanism to
formulate the training of a teacher and a student as a bi-level
optimization problem, so that the teacher can better trans-
fer knowledge by exploiting feedback about the learning
process of students. SFTN [84] first modularizes a teacher
and a student network into multiple blocks. The interme-
diate feature representations from each teacher block are
followed by multiple student blocks, respectively, where
the teacher and the student are simultaneously trained by
minimizing the differences in the feature representations
and logits between the teacher and the student. Xu et al. [85]
utilize self-supervised learning, when treated as an auxil-
iary task, to help gain more rounded and dark knowledge
from a teacher network. Specifically, contrastive prediction
is selected as the self-supervision task to maximize the
agreement between a data point and its transformed version
via a contrastive loss in latent space. Since the large gap
between the teacher and the student could degrade the
student performance, Mirzadeh et al. [74] first introduce
the teacher assistant (i.e, intermediate-sized network) as a
multi-step teacher-student learning to eliminate this gap.
Bergmann et al. [86] embrace multiple student networks
that are simultaneously supervised with a power teacher
network pre-trained on a large dataset of natural images, re-
sulting in the accurate pixel-precise anomaly segmentation
in high-resolution images. Thus, anomalies can be detected
when the students fail to imitate the output of the teacher.

Inspired by recent efforts, multiple teachers have been
widely introduced in KD, where a student simultaneously
receives knowledge transferred from multiple teachers.
Consequently, a student network can robustly learn com-
prehensive and different knowledge under the guidance of
multiple teacher networks. Fig. 3 compares the architectures
of student network with single and multiple teacher net-
works. In the multi-teacher distillation, averaging multiple
teachers [24, 87, 88, 89, 90] is a commonly-used approach to
incorporate the potentially diverse knowledge from teachers
(i.e., each teacher with an identical importance weight);
concretely, a student network aims to learn the average
softened logits of multiple teacher networks.

Note that multiple teacher networks can be hetero-
geneous since these teacher networks can be trained in
various environments (e.g., different data distributions).
This suggests that the transferred knowledge from various
teachers can contribute differently to the student learning
performance, so that the student network may learn more
knowledge from similar teacher networks. As a result, av-
eraging multiple teacher networks could be sub-optimal
by assigning each teacher an identical importance weight.
Thus, to learn more representative and critical knowledge
from significant teacher networks, advanced teacher weight-
ing approaches have been introduced to assign a specific
importance weight to each teacher network. For exam-
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ple, Adaptive Multi-teacher Multi-level Knowledge Distilla-
tion (AMTML-KD) [81] includes multiple teacher networks,
where each teacher network is learned an instance-level im-
portance weight for adaptively integrating the intermediate
feature representations from all teachers. Consequently, a
student network can fully learn potentially diverse knowl-
edge from multiple teachers. In addition to the logits from
multiple teachers, You et al. [82] also additionally consider
the relative similarity between intermediate representations
of samples as one type of dark knowledge to guide the
training of a student network. Concretely, the triplets are
utilized to encourage the consistency of relative similarity
relationships between the student and the teachers. Yuan
et al. [91] formulate the teacher selection problem under
an RL framework, where each teacher network is assigned
an appropriate importance weight based on various train-
ing samples and the outputs of teacher networks. Then,
multiple teacher networks are randomly selected based
on the learned importance weights to guide the training
of the student network at each epoch. Ruder et al. [92]
consider multi-teacher knowledge distillation for the do-
main adaptation and design teacher importance weights
according to the data similarity between source domains
and a target domain. Specifically, each teacher network is
trained on a source domain, and the teacher importance
weights are increased on the source domains similar to the
target domain. Wu et al. [93] simultaneously learn teacher
importance weights by minimizing the validation empirical
risk loss of the updated feature representations.

4.2 Graph-Based Distillation

With the recent advancements of Graph Neural Networks
(GNNs) and geometric representations, graph-based distil-
lation methods have been proposed to fully explore the
structural relations of the data. To enhance the structural
awareness of the student network, knowledge is represented
as a graph [63, 94, 95, 96, 97], where vertex attributes denote
the intermediate feature representations of training samples,
and edge weights denote the similarity (e.g., Euclidean
distance and cosine similarity) between the representations
of two samples. Specifically, Liu et al. [63] transfer the inter-
mediate vertex and edge transformations from the teacher
to the student. Lassance et al. [94] and Zhang and Peng [96]
learn the graph-based knowledge by minimizing the dis-
tance between the adjacency matrices of knowledge graphs
formulated from the teacher and the student. Zhou et al.
[95] extract the geometric representations through Topology
Adaptive Graph Convolutional Network (TAGCN) [98, 99]
on the attributed context graphs, and then maximize the
mutual information (i.e., InfoNCE estimator [100]) between
such the graph-based knowledge. To transfer the scene
structural knowledge in the road marking segmentation,
Hou et al. [97] introduce three inter-region affinity graphs
(i.e., mean, variance, and skewness graph), in which a
vertex attribute is the feature distribution statistic for each
region computed by moment pooling [61, 101], and an edge
weight denotes the cosine similarity between the feature
distributions of two vertices.

In addition, several studies have applied teacher-student
architectures to GNNs, which build a shallower student

(a) Knowledge learning from single teacher network.

(b) Knowledge learning from multiple teacher networks.

Fig. 3: The architecture of student network with the guided
knowledge from single and multiple teacher networks.

GNN by distilling knowledge from a deeper teacher
GNN [102, 103]. Given the feature embeddings of the node
and the graph from teacher and student GNNs, Yang et al.
[104] introduce a Local Structure Preserving (LSP) module
to explain the graphical semantics, which first generates
the distribution for each local structure from both the
teacher and student and then trains the student to learn the
topological structure from the teacher by minimizing the
distance between the distributions. To preserve global struc-
tural information, Joshi et al. [105] introduce a node-level
contrastive distillation task on pair-wise relations across the
embedding spaces of the teacher and student, which trains
the student to spatially align its node embeddings with the
corresponding embeddings from the teacher (i.e., positive
samples). Deng and Zhang [106] learn the fake topological
graphs from the pre-trained teacher GNN by modeling the
topology with a multivariate Bernoulli distribution, which
is further transferred to the student GNN. Feng et al. [107]
collaboratively learn two shallower GNNs to distill the
knowledge from each other in a hierarchical manner, which
formulates the distillation for different nodes as a sequen-
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tial decision-making problem. To solve this problem, this
paper introduces the two-level distillation: (1) node-level
distillation to distinguish which GNN distills knowledge for
each node. (2) structure-level distillation to decide the local
neighborhood subset of each node to be propagated. Once
the direction and the local neighborhoods are determined,
both the soft label and the neighborhood relations of each
node are transferred to the other GNN.

4.3 Federated Distillation
Federated learning (FL) is a distributed machine learning
approach that enables model training on many clients (for
example, mobile devices). In this setup, the data is stored
locally and does not need to be sent to a centralized location.
Instead, models are sent to the data, trained locally, and the
model updates (not the data) are sent back to a central server
where they are aggregated to update the global model.
It is especially beneficial when data privacy is crucial or
impractical to send large amounts of data to a centralized
location. While the parameter-averaging aggregation strate-
gies in federated learning (FedAvg) effectively address data
privacy concerns, they grapple with two key challenges:
private data issues and heterogeneous models. The char-
acteristics of private data may not align with those of other
clients, leading to local models diverging from one another
during training and fine-tuning on private instances. The
clients might prefer not to reveal details of their models,
rendering this parameter-sharing approach unsuitable.

Federated distillation methods have been effectively em-
ployed to address data heterogeneity issues, which can be
applied either on the server side (e.g., utilizing a proxy
dataset for ensemble distillation [108, 109, 110]) to ad-
just the global model, or on the client side by incorpo-
rating regularization techniques to control the data drift
[111, 112, 113, 114]. Specifically, Chen and Chao [110] use
a Bayesian model ensemble for robust aggregation as an
alternative to average predictions. Lin et al. [108] present
a server-side ensemble distillation method using a proxy
dataset to support model heterogeneity and enhance Fe-
dAvg. The work of FedAUX [109] propose unsupervised
pre-training on auxiliary data for client-side feature extrac-
tor initialization and ensemble prediction weighting based
on private certainty scores. Zhang et al. [115] refine the
global model server-side using data-free knowledge distil-
lation and adversarial training of a generator model. The
studies of [111, 112] have determined that local KD-based
regularization effectively reduces the influence of non-IID
data in FL scenarios. The client’s local objective function
is a mix of cross-entropy loss and a KD-based loss, which
measures the discrepancy between the global (teacher) and
local (student) models’ outputs on private data, for example,
through KL divergence.

For the heterogeneous models, the FedAvg protocol
can be enhanced through server-side ensemble distilla-
tion during the aggregation process [108, 109]. The server
manages prototypical models, aggregates post-update, and
leverages unlabeled/synthetic data for fine-tuning, which
enables effective knowledge exchange across diverse client
architectures. The co-distillation adaptations serve as an
alternative to FedAvg’s parameter averaging. Several meth-
ods involve server aggregation of global targets updated

by clients who distill locally and fine-tune models using
their data. More modern strategies also consider server-
side distillation [116, 117, 118]. The algorithm design is
influenced by whether a labeled or unlabeled proxy dataset
is chosen. Different from the study [116] compressing soft
targets to boost communication, Chang et al. [119] improve
the efficiency by merging local distillation and training. The
work of FedMD [120] uses labeled datasets for pre-training,
whereas ERA [121] adjusts aggregation to optimize training
in non-IID settings.

4.4 Cross-Modal Distillation

In cross-modal learning environments, there might be sce-
narios where certain modalities’ data or labels are un-
available during training or testing [122, 123]. This poses
a challenge and accentuates the necessity for knowledge
transfer between different modalities. The integration of KD
into such environments represents a significant stride, facil-
itating an enhanced understanding and synergy of varied
data modalities.

Buciluǎ et al. [124] and Ba and Caruana [125] make ear-
lier contributions to this field, where they explore the prin-
ciples of model compression and proposed effective ways
to distill the knowledge of a large model into a smaller one.
Luo et al. [126] later explore the interplay between KD and
cross-modal learning, introducing a novel technique that
capitalizes on the unique strengths of distinct modalities
in a KD setting, specifically addressing the text and visual
modalities. Their method integrates the essence of KD, in
tandem with the intricacies of cross-modal data handling,
thereby paving the way for future advancements in the field.
Subsequently, drawing on the groundwork of Luo et al.
[126], Kim et al. [127] propose a unique approach known as
deep cross-modal projection learning for image-text embed-
dings. Their innovative KD method involves transferring
knowledge from visual to textual representation, and vice
versa, showcasing its proficiency in text-to-image synthesis
tasks. This work significantly expands the purview of KD
in the realm of cross-modal learning. In the same year, Tian
et al. [128] demonstrate how KD could enhance cross-modal
sentiment analysis performance. Their research marks a
notable instance of applying KD to cross-modal sentiment
analysis, an area necessitating the understanding and syn-
thesis of information from different modalities, which sets
a precedent for future studies, especially those focusing on
emotion-based cross-modal analysis.

The potential of KD in cross-modal learning is further
explored by Nguyen et al. [129], who focus on video and
language processing. Their research demonstrates how KD,
when aptly incorporated, could significantly improve the
performance of models working on these complex, cross-
modal tasks. The implications of their work extend to appli-
cations such as video summarization, captioning, and more.
Other noteworthy works like [130], [131], [132], [133], [134],
and [135] have significantly advanced the state of cross-
modal distillation, showing its effectiveness in various fields
ranging from machine translation to surveillance systems,
and from medical imaging to dialog systems.
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5 DISTILLATION SCHEMES

In this section, we will summarize online distillation and
self-distillation schemes under the framework of Teacher-
Student architectures, which suggest that both student and
teacher networks will be learned during the training stage.

5.1 Online Distillation

Table 2 compares the different distillation schemes in terms
of teacher and student learning statuses, as well as their
role statuses. The classic distillation scheme is offline distil-
lation [4], which represents that student networks learn the
knowledge transferred from pre-trained teacher networks.
Specifically, powerful teacher networks are first completely
well-trained on large-scale datasets, and then transfer the
knowledge to guide the training of compact student net-
works. The roles of teacher and student networks are not
exchanged during the student training process. It is impor-
tant to note that offline distillation is not included in the
scope of this survey, and we refer readers to the existing
surveys that have provided comprehensive reviews on the
offline distillation [12, 14].

Although the offline distillation scheme is straightfor-
ward and computationally efficient, powerful pre-trained
teacher networks and large-scale datasets could be lim-
ited [23, 74, 136]. To solve such issues, an online distillation
scheme is further commonly utilized to simultaneously train
student and teacher networks, so that the whole knowl-
edge learning process can be end-to-end trainable. For in-
stance, in On-the-fly Native Ensemble (ONE) learning strat-
egy [35, 40], a native ensemble teacher network is created
from multiple student branches on-the-fly and simultane-
ously trained with these student branches. With student
branches, both teachers and students are more efficient to be
trained with superior generalization performance and with-
out asynchronous model updates. Due to the gating module
on the shared layer, student branches are limited to the same
network architecture in ONE learning strategy. To overcome
this limitation, Feature Fusion Learning (FFL) [137] is fur-
ther proposed to allow student branches to be applicable to
any architecture. To better boost the knowledge distillation
process, Su et al. [138] additionally introduce an attention
mechanism to capture important and high-level knowledge,
so that teachers and students can be dynamically and effec-
tively trained with the help of the valuable knowledge. In
Peer Collaborative Learning (PCL) [139], a peer ensemble
teacher is trained with the ensemble feature representation
of multiple student peers. Besides, a temporal peer means
the teacher is individually built for each student peer to
collaboratively transfer knowledge among student peers.

5.2 Self-Distillation

The self-distillation scheme is one particular scheme of on-
line distillation. Different from the classic online distillation
methods, the roles of student and teacher networks are
dynamic during the iterative training process, which indi-
cates that student and teacher networks can be exchanged
or student networks are able to learn the knowledge from
themselves (i.e., Teacher-free knowledge learning) in the
self-distillation scheme. Yuan et al. [76] demonstrate KD

TABLE 2: The comparison between the different distillation
schemes.

Distillation
scheme

Teacher
training
status

Student
training
status

Role
status

Offline distillation
[4, 15, 18, 19, 20]
[22, 23, 24, 69, 75]

[6, 7, 66, 70, 71, 72]
[9, 10, 11, 27, 28, 140]

Well trained To be trained Static

Online distillation
[23, 35, 40, 74, 136]
[8, 31, 137, 138, 139]
[141, 142, 143, 144]

To be trained To be trained Static

Self-distillation
[5, 76, 136, 145, 146]

[68, 77, 147, 148]
To be trained To be trained Dynamic

as a type of label smoothing regularization, and thus label
smoothing regularization can be further regarded as a vir-
tual teacher. Based on these analyses, Teacher-free Knowl-
edge Distillation is further proposed, where a student can
learn the knowledge from itself or a manually-designed
regularization distribution. Pang et al. [145] further lever-
age the iterative self-distillation scheme for the end-to-
end video anomaly detection, where the student networks
(i.e., the anomaly learners) continuously generate the new
pseudo labels to replace the previous ones. Instead of a
powerful teacher network, OKDDip consists of multiple
auxiliary student peers and one group leader in the two-
level distillation [136]. Each student peer is self-trained on
the knowledge aggregated from other peers with differ-
ent importance weights. Then all peers further guide the
training of the group leader during the second distillation.
Chung et al. [146] transfer the feature maps and the soft
logits through the online adversarial knowledge distilla-
tion, where each network has a discriminator that distin-
guishes the feature maps from its own and other networks.
Through the adversarial training of the discriminator, each
network can learn the distribution of feature maps from
other networks by fooling the corresponding discriminator.
Multi-view Contrastive Learning (MCL) [147] captures the
correlation of feature representations of multiple student
peers, and each peer provides a unique feature represen-
tation that suggests a specific view of input data. These
feature representations can be regarded as more powerful
knowledge to be distilled for the effective training of student
peers. Online Subclass Knowledge Distillation (OSKD) [148]
reveals the similarities inside each class to capture the
shared semantic information among subclasses. During the
online distillation process, each sample moves closer to the
representations of the same subclass while further away
from that of different subclasses. Recent online teacher-
student learning benefits from collaborative learning, where
mutual knowledge is shared to enhance the learning ability
of both teachers and students. In Knowledge Distillation via
Collaborative Learning (KDCL) [77], multiple students with
different capacities are assembled to simultaneously provide
high-quality soft logits to instruct themselves with signifi-
cant performance improvement. Specifically, each student is
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fed with individually-distorted images to reduce variance
against perturbations in the input data domain.

6 APPLICATIONS

The applications of Teacher-Student architectures with KD
are introduced in this section. Specifically, we categorize the
applications based on various purposes of networks: classi-
fication, recognition, generation, ranking, and regression.

6.1 Classification Purpose
6.1.1 CV
Image classification issues can be resolved through KD [149,
150, 151, 152]. A label refinement approach for self-
improvement and label augmentation is proposed [150]
for incomplete, ambiguous, and redundant image labels in
order to learn soft, informative, collective, and dynamic for
complicated image classification labels. In order to classify
low-resolution images, Zhu et al. [149] present deep fea-
ture distillation, in which the student’s output features are
compared to the teacher’s output features. This method was
inspired by KD-based low-resolution face recognition.

6.1.2 NLP
Text classification tasks include sentence categorization and
sentence classification. Included are broad domain knowl-
edge and knowledge distillation relevant to a certain task.
Tang et al. [153] suggest task-specific KD from a BERT
teacher model to a bidirectional long short-term memory
network for sentence classification and matching. In order
to learn across different NLP tasks, a lightweight student
model called DistilBERT [154] that has the same basic
structure as BERT was created. The authors of [80] suggest
internal distillation to create a condensed version of the
huge teacher BERT called the student BERT.

6.1.3 Speech
For audio classification, to maximize information transmis-
sion, [155] demonstrates a multi-stage feature distillation
process and used an adversarial learning strategy. KD is
employed as a voice improvement technique to increase
noise-robust speech recognition, and an audio-visual multi-
modal KD approach is developed [156]. The student model
for audio data transfers knowledge from the teacher model
for visual and auditory data. In essence, this improve-
ment allows teachers and students to communicate cross-
modal information [156, 157, 158]. Shi et al. [159] suggest
a quantitative distillation approach that combines KD and
quantification to effectively detect acoustic occurrences.

6.1.4 Data Security and Privacy
Adversarial samples can fool the behaviors of neural net-
works (e.g., misclassification) by maliciously manipulating
the input data to the networks. Gil et al. [160] introduce a
black-box adversarial attack that targets the toxicity classi-
fier detecting toxic language on social media. The source
classifier (i.e., the teacher) is first trained on the data with a
similar distribution to the target data, and then adversarial
samples are generated through HotFlip [161] on the source
classifier. The attacker (i.e., the student) is trained on such

generated samples and performs a black-box attack against
the target model. To tackle the data security issue, several
studies have introduced KD to build robust student net-
works against malicious perturbations. Goldblum et al. [162]
encourage the student to mimic the teacher’s predictions
within an ϵ-ball of training samples, by minimizing the dis-
crepancy between the predictions of the teacher on normal
images and the predictions of the student on adversarial
images. The prediction probability vector of the teacher
indicates the explicit relative information about classes,
which can improve the network generalization capability on
unseen data [163]. Hence, to enhance the network resilience
to perturbations, Papernot et al. [163] train the student solely
on the soft probability vectors predicted by the teacher.

Besides, the data privacy issue also poses significant
challenges in providing robust and generalized networks
with limited training data. To solve this challenge, Bai et al.
[164] adopt cross distillation to reduce the layer-wisely
accumulated errors on the student network. In addition to
receiving the layer-wise feature maps from the teacher to
the student (i.e., the correlation), the student’s intermediate
feature maps are also transferred to the teacher (i.e., the
imitation). To balance the correlation and imitation, Bai et al.
[164] further introduce the convex combination between
their loss functions or the intermediate representations of
the teacher and student networks. Instead of original train-
ing data, Lopes et al. [165] train the student network on
the activation records [166] and reconstructed data from the
teacher network. Specifically, to reconstruct original training
data, this work [165] inputs the random Gaussian noise
into the teacher, and then applies gradients to iteratively
minimize the difference between the activation records and
those for the noisy image. Papernot et al. [90] introduce the
privacy protection strategy for training data by limiting the
student training to the topmost teacher votes after adding
random noise. This strategy involves multi-teacher training
on disjoint subsets of sensitive data, and analyzes the sensi-
tivity of each teacher vote through the moment accountant
technique [167]. With the auxiliary and non-sensitive data,
the student network is trained on the partially-aggregated
predictions of the teachers with the topmost votes.

6.2 Recognition Purpose

6.2.1 CV
One of the applications of knowledge learning is to enhance
face recognition and improve the performance of the model
from the perspective of efficiency and accuracy. For exam-
ple, in [168], the student network of chosen information
neurons at the top layer of the teacher network receives
knowledge from the teacher network. The teacher-weighted
technique for knowledge transfer eliminated the feature
representation of the hint layer in order to prevent the
teacher from accidentally leading students astray [78]. A
technique of recursive KD is developed that initializes the
newer networks using the previous student network [169].
Since the majority of face recognition techniques use a test
set for which the training set is unaware of the category or
identity, such as [170] describes the angle loss, the distance
between positive and negative sample features is often the
face recognition criteria.
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6.2.2 NLP

Natural language processing has been substantially im-
proved by BERT [171], an expansive and complex multi-
lingual model that is also challenging to train. To address
the issue of the training which takes a lot of time and
resources, [153, 172, 173, 174] propose various compact
versions of BERT utilizing knowledge distillation. Jiao et
al. [173] propose TinyBERT, a transformer-based KD, to
accelerate the inference speed. For sentiment analysis, para-
phrase similarity matching, natural language inference, and
machine reading comprehension, Sun et al. [172] suggest
KD, in which the teacher hint layer’s feature representation
of the labels is transmitted to the students in this strategy.

6.2.3 Speech

The certain challenging issues in speech recognition can be
resolved through several KD studies [175, 176, 177]. To ad-
dress the issue of acoustic model overfitting in sparse data,
Asami et al. [176] employ KD as a regularisation technique
to train an adaptive model under the direction of the source
model. Ghorbani et al. [177] train an advanced multi-accent
student model by transferring knowledge across domains
and numerous accent-specific RNNs.

6.3 Generation Purpose

6.3.1 CV

A feature map-based KD approach [178] for GANs is pro-
posed to increase the accuracy of image categorization.
Students receive knowledge from feature maps in this way.
By combining a deep generative model for diagnosis with
a teacher-student model for interpretation, Wang et al. [78]
design a visual interpretation and diagnosis framework for
an image classifier.

6.3.2 NLP

One of KD-based applications in the generative model of
natural language processing is neural machine translation.
However, high-performing NMT models are frequently
enormous and complex, like BERT models. To generate
lightweight NMT models, many extended KD techniques
have been proposed [179, 180, 181]. Zhou et al. [180] demon-
strate how the capabilities of KD-based NAT models and
the data acquired through knowledge transfer are crucial to
their superior performance. Gordon and Duh [182] explain
the positive aspects of sequence-level KD from the stand-
point of data augmentation and regularisation.

Effective word-level KD [137] is extended to sequence
level for the sequence creation scenario of NMT. The dis-
tribution of sequences produced by the student model is
similar to that of the instructor. Tan and Le [183] suggest
multi-teacher distillation to handle the issue of linguistic
diversity, where numerous individual models dealing with
bilingual couples are instructors and multilingual models
are pupils. Wei et al. [184] suggest that the model that
performs the best during training is picked as the teacher
and updated by any following better model in order to
enhance the performance of machine translation tasks.

6.4 Ranking Purpose

In the domain of recommender systems, the crucial task
is predominantly a ranking problem with the objective of
accurately and efficiently predicting user-preferred items
in an ordered sequence [185]. To fulfill this task, KD, a
technique that transfers knowledge from a complex teacher
model to a compact student model, is harnessed, enabling
a reduction in computational demands while preserving or
enhancing performance.

Reviewing KD literature reveals diverse approaches to
addressing ranking-related challenges in the recommen-
dation. For instance, Zhou et al. [186] propose a rocket
launching process, which simultaneously trains the light
network (i.e., the student) and the booster network (the
teacher) by learning the predictions from each other. Note
that some lower-level layers are shared between these two
networks. Zhu et al. [187] introduce an adaptive ensemble
distillation framework for click-through prediction, where
the importance weights of teacher networks are learned
through a teacher gating network in a sample-wise manner.
To avoid overfitting when training the student network,
the distillation loss from the teacher network is further
considered as the early-stopping criteria. Lee et al. [188]
propose a novel KD technique for collaborative filtering,
which incorporates rank-aware sampling and unique train-
ing strategies to alleviate the effects of data sparsity and
ambiguous feedback. To extend this, Kang et al. [189] sug-
gest the student model’s learning should not only mir-
ror the teacher’s predictions but also integrate the latent
knowledge embedded in the teacher model. Their approach
utilizes Distillation Experts and a Relaxed Ranking Distil-
lation method to transfer knowledge, considering items’
relaxed ranking orders. Moreover, Liu et al. [190] introduce
a counterfactual recommendation methodology employing
various distillation strategies including label-based, feature-
based, sample-based, and model structure-based to manage
inherent biases and optimize performance in recommender
systems. Similarly, Kang et al. [191] advocate for trans-
ferring the topological structure rather than solely point-
wise representation from the teacher model to the student,
enabling the capture of the relational information integral to
recommender systems. Finally, Chen et al. [192] put forward
a stratified distillation strategy aiming to correct popularity
biases and enhance the equity of recommendations.

6.5 Regression Purpose

To address regression problems, several approaches have
been proposed in the literature. Takamoto et al. [193] in-
troduce a novel teacher outlier rejection loss function that
identifies outliers in training samples using teacher predic-
tions. They employ a multi-task network with two outputs:
the ground truth estimation and the teacher prediction,
effectively training a student network. Another method for
regression tasks is the data-free KD technique proposed by
Kang and Kang [194]. This method utilizes a generator net-
work to generate synthetic data points, enabling the student
network to replicate the prediction ability of the teacher
network without requiring a training dataset. Experimental
results demonstrate the superior prediction accuracy and
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lower RMSE achieved by this approach compared to base-
line methods on various benchmark datasets.

In the context of representation learning, Yang et al.
[195] leverage a Softmax Regression Loss to optimize the
student network’s output feature, emphasizing effective
representation learning. They introduce two loss functions:
the first focuses on direct feature matching to optimize the
student’s penultimate layer feature, while the second decou-
ples representation learning and classification by utilizing
the teacher’s pre-trained classifier. These loss functions ef-
fectively transfer relevant information while preserving the
representational power of the student’s feature.

Furthermore, for time-series regression tasks in indus-
trial manufacturing, Xu et al. [196] propose Contrastive
Adversarial Knowledge Distillation (CAKD). This approach
employs adversarial and contrastive learning to transfer
knowledge from a complex Long Short-Term Memory
(LSTM) model to a simpler Convolutional Neural Network
(CNN) model. The CAKD method enhances model perfor-
mance and efficiency, making it more applicable to resource-
limited environments. These advancements in KD for re-
gression demonstrate the potential of leveraging teacher
networks and synthetic data to improve the performance, ef-
ficiency, and generalization capabilities of student networks
in regression tasks.

7 OPPORTUNITIES AND FUTURE WORKS

In this section, we discuss the opportunities and potential
directions for improving the distillation process from the
following perspectives: the architecture design of teacher
and student networks, the quality of knowledge, and the
theoretical studies of regression-based knowledge learning.

7.1 Teacher-Student Architecture Design

To improve the distillation process, some studies have inves-
tigated the relationship between the Teacher-Student archi-
tecture design and learning performance. The knowledge is
commonly represented using soft labels and feature embed-
dings from teachers, and bigger and more robust teacher
networks can be expected to provide more representative
and reliable knowledge. Therefore, the classic approach to
train more accurate students is to design large-scale teacher
networks. However, some recent works investigate that the
increasing gap (in size) between student and teacher net-
works could decrease the learning performance [74, 79, 197].
Recently, Neural Architecture Search (NAS) has witnessed
many successes in automatically designing neural networks
in solving some tasks, such as image classification [198],
NLP [199], speech recognition [200], among others. For
example, Kang et al. [197] integrate NAS with the oracle
KD to find the optimal student network structures and
operations for potentially achieving better performance than
teacher networks. With the help of NAS, the efficient student
network can be found from the fixed and high-performing
teacher network with lower computational cost and fewer
network parameters [201]. Hence, NAS can be further in-
corporated with KD in the future direction, which searches
for the best pair of powerful teacher and combat student
networks, leading to efficient learning performance.

7.2 Knowledge Quality

Existing works have been commonly dedicated to improv-
ing the distillation process by designing efficient network
structures and transferring better feature representations.
However, there are fewer studies analyzing the amount
of informative knowledge that can be potentially utilized
and transferred from teachers. Through the quantification
of visual concepts encoded in teacher networks, Cheng et
al. [202] explain the success of KD from the three hypothe-
ses: learning more visual concepts, learning various visual
concepts, and yielding more stable optimization directions.
Miles et al. [203] integrate the analysis of information theory
with KD using infinitely divisible kernels, which achieve the
computationally-efficient distillation process on the cross-
model transfer tasks. Therefore, the quantification of knowl-
edge can be investigated in the future research direction,
which aims to analyze how much important knowledge can
be potentially captured before the learning process.

7.3 Theoretical Understandings of Regression-Based
Knowledge Learning

Currently, most teacher-student architectures are employed
on classification tasks, where intermediate feature embed-
dings and soft logits can be commonly represented as
dark knowledge transferred to student networks. Moreover,
more advanced training schemes and architecture designs
are introduced to improve the efficiency of the distillation
process. Although several works[193, 194, 195, 196] focus
on regression tasks, one promising research direction can be
investigated in the theoretical studies of regression-based
knowledge learning, such as the representation of dark
knowledge on regression problems. The final predictions of
teacher networks are represented as knowledge to be trans-
ferred to student networks [204, 205], and student networks
also aim to mimic the extracted feature representations
from teacher networks [206, 207]. With deeper theoretical
studies on regression-based knowledge learning, teacher-
student architectures will be further effectively employed
in practical applications.

8 CONCLUSION

Teacher-Student architectures were first proposed in KD,
which aim to obtain lightweight student networks with
comparable performance to deep teacher networks. Differ-
ent from the existing KD surveys [12, 13, 14] primarily
focusing on the objective of knowledge compression, this
survey provides a comprehensive review of Teacher-Student
architectures for multiple distillation objectives, including
knowledge compression, knowledge expansion, knowledge
adaptation, and knowledge enhancement. Moreover, this
survey not only introduces various knowledge representa-
tions and optimization objectives associated with each spe-
cific representation, but also provides a detailed overview of
representative learning algorithms and distillation schemes
under the framework of Teacher-Student architectures. The
recent applications of Teacher-Student architectures with
KD are summarized based on various network purposes:
classification, recognition, generation, ranking, and regres-
sion. Lastly, this survey investigates the promising research
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directions of knowledge learning on Teacher-Student archi-
tecture design, knowledge quality, and theoretical studies of
regression-based learning, respectively. Through this com-
prehensive survey, industry practitioners and the academic
community can gain valuable insights and guidelines for ef-
fectively designing, learning, and applying Teacher-Student
architectures on various distillation objectives.
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