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ABSTRACT
Self-supervised contrastive learning, which directly extracts inher-
ent data correlations from unlabeled data, has been widely utilized
to mitigate the data sparsity issue in sequential recommendation.
The majority of existing methods create different augmented views
of the same user sequence via random augmentation, and subse-
quently minimize their distance in the embedding space to enhance
the quality of user representations. However, random augmenta-
tion often disrupts the semantic information and interest evolution
pattern inherent in the user sequence, leading to the generation
of semantically distinct augmented views. Promoting similarity
of these semantically diverse augmented sequences can render
the learned user representations insensitive to variations in user
preferences and interest evolution, contradicting the core learning
objectives of sequential recommendation. To address this issue, we
leverage the inherent characteristics of sequential recommenda-
tion and propose the use of context information to generate more
reasonable augmented positive samples. Specifically, we introduce
a context-aware diffusion-based contrastive learning method for
sequential recommendation. Given a user sequence, our method se-
lects certain positions and employs a context-aware diffusion model
to generate alternative items for these positions with the guidance
of context information. These generated items then replace the
corresponding original items, creating a semantically consistent
augmented view of the original sequence. Additionally, to maintain
representation cohesion, item embeddings are shared between the
diffusion model and the recommendation model, and the entire
framework is trained in an end-to-end manner. Extensive experi-
ments on five benchmark datasets demonstrate the superiority of
our proposed method.

1 INTRODUCTION
Sequential recommendation (SR) systems predict the next item for
users based on their historical interactions, which have demon-
strated significant value on various online platforms like YouTube
and Amazon. One of the major challenges in sequential recommen-
dation is data sparsity [22, 43]. The limited and noisy user inter-
action records impede the training of complex SR models, thereby
constraining their performance. Recently, contrastive learning has
been employed to alleviate this issue, leading to significant advance-
ments [3, 23, 36].

Contrastive learning extracts inherent data correlations directly
fromunlabeled data to enhance user representation learning, thereby
∗Corresponding author.
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Figure 1: An example of augmented sequences with semantic
discrepancies, where view 1 and view 2 are two augmented
views of the original user sequence by random substitution

improving SR models. Existing methods typically use data aug-
mentation to create augmented views of original user sequences
and maximize the agreement among different views of the same
user. In terms of data augmentation levels, existing methods can
be categorized into three types: 1) Data Level. This involves gen-
erating augmented views of user sequences by applying random
augmentations [36] such as masking, substituting, reordering, and
cropping. More informative methods based on item correlation
are also used [21]. 2) Model Level. To reduce the disturbance to
original sequences, some methods propose model-level operations
[20, 23]. These involve performing a forward pass of neural net-
works on a user sequence twice, each time with a different dropout
mask. However, the dropout operation still introduces a consider-
able amount of uncertainty due to its randomness. 3) Mixed Level.
These approaches, exemplified by Qin et al. [22] and Zhou et al.
[43], integrate both data-level and model-level augmentations. The
aim is to extract more expressive features and establish distinct
contrastive objectives for varying levels of augmentation.

While the above studies have demonstrated efficacy in improv-
ing SR models, they neglect the rationality of the augmented posi-
tive samples. Most existing methods [3, 20, 22, 23, 36, 43] employ
random augmentation either at the data or model level to gen-
erate augmented views, and regard two augmented views of the
same user as a pair of positive samples. However, these methods
introduces a large amount of uncertainty, which may cause un-
reasonable positive pairs. For example, Figure 1 shows an original
user sequence and two augmented views obtained by applying the
random substitution operation twice. It is evident that these two
augmented sequences exhibit significant semantic discrepancies,
primarily reflected in the following points: 1) The preference of
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View 1 focuses on sports and clothing, while View 2 mainly con-
centrates on electronic products. 2) The evolution of interests in
the two views exhibits distinctly different patterns. Maximizing
the representation agreement between such different views can
cause learned representations to overlook significant semantic dif-
ferences among user sequences, resulting in suboptimal solutions
or even representation space collapse [23]. Moreover, this can lead
to learned user representations being insensitive to different pat-
terns of interest evolution, which contradicts the ultimate goal of
sequential recommendation. Therefore, we argue that more effec-
tive contrastive learning should consider the rationality of data
augmentation.

How can we generate more reasonable augmented views in
sequential recommendation? Intuitively, reasonable data augmen-
tation should take into account the characteristics of sequential
recommendation. Sequential recommendation differs from other
applications, such as computer vision, in two main aspects: 1) inter-
action records are often sparse, making the user sequence highly
sensitive to modifications, and 2) there is a strong sequential in-
terdependence between items in the sequence. Therefore, when
modifying some items in a sequence, failing to consider the preced-
ing and subsequent items and their sequential dependencies (i.e.,
context information) can lead to a complete change in the sequence’s
semantics, resulting in unreasonable augmented sequences. In light
of this, we make the first attempt in this paper to introduce context
information to improve the rationality of augmented views.

Our basic idea is to use context information as guidance to gen-
erate alternative items that align with the context information for
specific positions within a sequence. These generated items then
replace the corresponding original items, creating a positively aug-
mented view of the original sequence. Two augmentations of the
same user sequence serve as a pair of positive samples for con-
trastive learning. From a high-level perspective, we learn the condi-
tional distribution of each position within a sequence based on its
context information, and generate replacements according to this
conditional distribution, thereby producing augmented sequences.

To achieve this goal, we propose the Context-aware Diffusion-
based Contrastive Learning for SequentialRecommendation, named
CaDiRec. CaDiRec generates more reasonable augmented samples
through conditional generation. Specifically, we employ a diffusion
model as the generator due to its remarkable capabilities in learning
underlying data distributions and robust conditional generation
[12, 17]. A bidirectional Transformer [4] serves as the encoder of the
diffusion model to capture complex sequential dependencies of the
context information. The learned context representation guides the
diffusion model to gradually refine the generated items, enabling it
to accurately learn the conditional distribution of items within a
sequence. During contrastive learning, CaDiRec generates alterna-
tive items by sampling from the learned conditional distribution.
This ensures that the generated items are coherent with the context
and sequential dependencies, thereby producing more reasonable
augmented sequences. Moreover, to align the embedding space of
the diffusion model with that of the SR model, we train both models
jointly with shared item embeddings in an end-to-end manner. By
integrating these designs, CaDiRec effectively enhances the quality
of data augmentation for contrastive learning, leading to better user
modeling and improved recommendation performance.

Our main contributions are summarized as follows:
• We propose a novel model, CaDiRec, that generates reasonable
augmented views for contrastive learning through conditional
generation, thereby improving sequential recommendation.

• To the best of our knowledge, this is the first work to explore the
use of context information (i.e., both preceding and succeeding
items) for contrastive learning in sequential recommendation.

• We conduct extensive experiments on five public benchmark
datasets, and the results demonstrate the superiority of our
method.

2 RELATEDWORK
In this section, we summarize the related works from the following
three fields: (i) sequential recommendation, (ii) self-supervised
contrastive learning, and (iii) diffusion models.

2.1 Sequential Recommendation
Sequential recommendation aims tomodel a user’s preference based
on their historical interactions. In the initial phase, researchers
treated the evolution of user interests as a Markov process and em-
ployed Markov chains to predict the next item for each user [9, 25].
With the rapid advancements in deep learning, various techniques
such as convolutional neural networks (CNN) and recurrent neural
networks (RNN) have been utilized in sequential recommenda-
tion [10, 11, 28], leading to remarkable achievements. Subsequently,
the introduction of the attention mechanism has significantly en-
hanced recommendation performance. SASRec [14], for instance,
is the pioneering work that employs the self-attention mecha-
nism to model the evolution of user preference. Following that,
BERT4Rec [27] is proposed to use a bidirectional self-attention en-
coder to capture context information of the user sequence. Recently,
many self-attention-based methods have made improvements to
existing approaches, achieving notable progress.

2.2 Self-Supervised Contrastive Learning
Self-supervised learning is widely used to tackle challenges as-
sociated with data sparsity and noise. It improves representation
learning by constructing informative supervisory signals from the
unlabeled data itself. Self-supervised learning has been extensively
applied in various domains, such as computer vision (CV) [1, 2, 16]
and natural language processing (NLP) [37].

Due to the inherent issues of user behavior sparsity and noisy
interaction records in recommendation scenarios, self-supervised
contrastive learning has played a crucial role in multiple recom-
mendation tasks [13, 33, 35, 38, 40, 41]. When it comes to sequen-
tial recommendation, researchers design informative contrastive
learning objectives for learning better user representations from
historical interactions. S3-Rec [42] introduces a method that incor-
porates auxiliary self-supervised objectives to learn the correlations
among items, attributes, and segments. CL4SRec [36] designs three
data-level augmentation operators, namely crop, mask, and reorder,
which are employed to generate positive pairs and promote the
invariance of their representations. However, introducing random
perturbations to the already sparse interaction records of a user
can alter her original preference, and maximizing the agreements
among semantically inconsistent sequences can lead the model
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to obtain suboptimal solutions. To solve this issue, CoSeRec [21]
suggests substituting a specific item in the sequence with a sim-
ilar item. However, the item similarity is measured by simple co-
occurrence counts or item embedding distance, neglecting the con-
text information of user behaviors. Later, DuoRec [23] proposes a
model-level augment strategy, which generates positive augment
pairs by forward-passing an input sequence twice with different
Dropout masks. However, this approach is also a kind of random
augment at the model level, lacking the ability to maintain semantic
consistency. In addition, ICLRec [3] attempts to extract user intent
from sequential information and subsequently performs contrastive
learning between user representations and intent representations.
ECL-SR [43] designs different contrastive learning objectives for
augmented views at different levels. MCLRec [22] further combines
data-level and model-level augmentation strategies, which applies
random data augmentation proposed by CL4SRec to the input se-
quence and then feed the augmented data into MLP layers for the
model-level augment.

However, the design intentions of these methods do not reflect
the constraints on semantic consistency in the augmented views,
which can potentially lead to the generation of incorrect positive
samples. In addition, they do not take into account context informa-
tion, which is important for preserving the semantic consistency.

2.3 Diffusion Models
Diffusion Models have gained significant prominence as a domi-
nant approach in diverse generative tasks, such as image synthe-
sis [5, 12, 26] and text generation [7, 17]. They demonstrate supe-
rior generative capabilities compared to alternative models such as
GANs [8] and VAEs [15], which can be attributed to their precise
approximation of the underlying data generation distribution and
provision of enhanced training stability.

Recently, diffusion models have been employed in the field of se-
quential recommendation. Some methods [6, 18, 31, 32, 39] directly
utilize diffusion models as the fundamental architecture for sequen-
tial recommendation. Specifically, these methods employ a left-to-
right unidirectional Transformer to extract guidance signals for the
generation of the next item. In contrast, other approaches [19, 34]
adopt a two-stage paradigm for data augmentation. Initially, they
train a diffusionmodel to generate pseudo user interactions aimed at
expanding the original user sequences. These augmented datasets
are then used to train downstream recommendation models. It
should be noted that they solely rely on the unidirectional informa-
tion of user behavior sequences as the diffusion guidance.

Different from these existing methods, our approach leverages
the diffusion model for contrastive learning. Specifically, we employ
the diffusion model to generate semantic-consistent augmented
views of the original sequences andmaximize the agreement among
different views from the same user. To the best of our knowledge,
this is the first instance of employing diffusion models for con-
trastive learning in the field of sequential recommendation.

3 PRELIMINARY
In this section, we first define our problem statement, followed by
introducing basic knowledge of diffusion models.

3.1 Problem Statement
The primary objective of sequential recommendation is to provide
personalized recommendations for the next item to users, leverag-
ing their historical interactions. We denote the user and item sets
as U and V , respectively. Each user 𝑢 ∈ U has a chronological se-
quence of interacted items s𝑢 = [𝑣𝑢1 , 𝑣

𝑢
2 ..., 𝑣

𝑢
|s𝑢 | ], where 𝑣

𝑢
𝑡 indicates

the item that 𝑢 interacted with at step 𝑡 , and |s𝑢 | is the number of
interacted items of user 𝑢. The goal is to predict the next item at
time step |s𝑢 | + 1 according to s𝑢 , which can be formulated as:

argmax
𝑣𝑖 ∈V

𝑃 (𝑣 |s𝑢 |+1 = 𝑣𝑖 |s𝑢 ), (1)

where the probability 𝑃 represents the likelihood of item 𝑣𝑖 being
the next item, conditioned on s𝑢 .

3.2 Diffusion Models
We provide an introduction to the fundamental principles of diffu-
sion models based on DDPM [12]. Typically, a diffusion model con-
sists of forward and reverse processes. Given a data point sampled
from a real-world data distribution x0 ∼ 𝑞(x0), the forward process
gradually corrupts x0 into a standard Gaussian noise x𝑇 ∼ 𝑁 (0; I),
which is formulated as:

𝑞(x1:𝑇 |x0) =
𝑇∏
𝑡=1

𝑞(x𝑡 |x𝑡−1),

𝑞(x𝑡 |x𝑡−1) = N(x𝑡 ;
√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I),

(2)

where 𝛽𝑡 ∈ (0, 1) is the variance scale at time step 𝑡 .
After the completion of the forward process, the reverse denois-

ing process aims to gradually reconstruct the original data x0. This
is achieved by sampling from x𝑇 using a learned diffusion model,
which can be formulated as:

𝑝𝜃 (x0:𝑇 ) = 𝑝 (x𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (x𝑡−1 |x𝑡 ),

𝑝𝜃 (x𝑡−1 |x𝑡 ) = N
(
x𝑡−1; 𝜇𝜃 (x𝑡 , 𝑡), Σ𝜃 (x𝑡 , 𝑡)

)
.

(3)

Training can be performed by optimizing the variational lower
bound of log𝑝𝜃 (x0):

Lvlb (x0) = E
𝑞 (x1:𝑇 |x0 )

[ log 𝑞(x𝑇 |x0)
𝑝𝜃 (x𝑇 )

+
𝑇∑︁
𝑡=2

log
𝑞(x𝑡−1 |x0, x𝑡 )
𝑝𝜃 (x𝑡−1 |x𝑡 )

− log𝑝𝜃 (x0 |x1)] .

(4)

Ho et al. [12] further propose to utilize the KL divergence for more
efficient training, which directly compares 𝑝𝜃 (x𝑡−1 |x𝑡 ) against
forward process posteriors, resulting in a mean-squared error loss:

Lsimple (x0) =
𝑇∑︁
𝑡=1

E
𝑞 (x𝑡 |x0 )

| |𝜇𝜃 (x𝑡 , 𝑡) − 𝜇 (x𝑡 , x0) | |2, (5)

where 𝜇𝜃 (x𝑡 , 𝑡) is the predicted mean of 𝑝𝜃 (x𝑡−1 |x𝑡 ) computed
by a neural network, and 𝜇 (x𝑡 , x0) is the mean of the posterior
𝑞(x𝑡−1 |x𝑡 , x0), which is tractable when conditioned on x0.
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(a) The framework of our proposed context-aware diffusion-based 
contrastive learning for sequential recommendation (CaDiRec)
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Figure 2: Overview of our proposed CaDiRec. (a) illustrates the framework of CaDiRec. For some items in the sequence, CaDiRec
generates alternative items based on context information to replace them, thereby producing augmented views of the original
sequence. Different augmented views of the same user are considered as a pair of positive samples. (b) shows the diffusion
process of our context-aware diffusion model. In the forward process, noise is gradually added to only some items in the
sequence. In the reverse process, context is used to guide the restoration of the conditional distribution at the corresponding
positions step by step. (c) depicts the encoder structure of the diffusion model. CaDiRec employs a bidirectional transformer to
capture contextual dependencies, providing effective guidance for the denoising process.

4 METHOD
This section begins with an introduction to the sequential rec-
ommendation model. Next, we present the details of our proposed
context-aware diffusion-based contrastive learningmethod, as shown
in Figure 2. Finally, we introduce the end-to-end training objective
of the whole framework.

4.1 Sequential Recommendation Model
Similar to many previous studies [3, 22, 23], our framework uses
a Transformer-based architecture for sequential recommendation
task, which comprises the embedding layer, the transformer layer,
and the prediction layer.

4.1.1 Embedding Layer. We create an item embedding matrix M ∈
R |V |×𝑑 for the item set, where 𝑑 represents the latent dimen-
sionality. Given a user sequence s = [𝑣1, 𝑣2, ..., 𝑣𝑛] where 𝑛 is the
max sequence length, we can obtain the input embedding vectors
e = [e1, e2, ..., e𝑛] ∈ R𝑛×𝑑 with respect to s. In addition, we also
construct a position embedding matrix P ∈ R𝑛×𝑑 . For𝑤-th item of
the sequence, we add the item embedding e𝑤 and the corresponding
position embedding p𝑤 , resulting the final input vector at step𝑤
h0𝑤 = e𝑤 + p𝑤 , and h0 = [h01, h

0
2, ..., h

0
𝑛] denotes the representation

of input sequence s.

4.1.2 User Sequence Encoder. Following the embedding layer, the
input vector h0 is passed through 𝐿 Transformer blocks to learn
the user sequence representations. Each Transformer (Trm) block
consists of a self-attention layer and a feed-forward network layer,
which can be formulated as:

h𝐿 = Trm(h0), (6)

where h𝐿 ∈ R𝑛×𝑑 denotes the hidden states of the last layer, and
the vector of the last position h𝐿𝑛 ∈ R𝑑 is used to represent the
whole user sequence.

4.1.3 Prediction Layer. The goal of sequential recommendation is
to predict the next item. In the prediction layer, we first calculate
the similarities between the user sequence representation vector
h𝐿𝑛 and item embedding vectors through an inner-product as:

r = h𝐿𝑛M
T, (7)

where r ∈ R |V | , and 𝑟𝑖 is the likelihood of 𝑣𝑖 being the next item.
The items are then ranked based on r to generate the top-k recom-
mendation list.

During training, we adopt the Binary Cross-Entropy (BCE) loss
with negative sampling to train the SR model, following many
previous methods [14, 36, 42].

Lrec = −
∑︁
𝑢∈U

𝑛∑︁
𝑡=1

log
(
𝜎 (h𝐿𝑡 · e𝑣𝑡+1 )

)
+ log

(
1 − 𝜎 (h𝐿𝑡 · e𝑣−

𝑗
)
)
, (8)

where we pair each ground-truth item 𝑣𝑡+1 with one negative item
𝑣−
𝑗
that is randomly sampled from the item set.

4.2 The Framework of CaDiRec
In this section, we introduce the overall framework of our proposed
context-aware diffusion-based contrastive learning method. The
details of the context-aware diffusion model will be introduced in
next section.

Existing methods neglect the context information of user se-
quences, thereby potentially generating unreasonable augmented
views for contrastive learning. In contrast to these methods, we
propose to utilize context information as a guidance to generate
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more reasonable augmented views through conditional generation.
Different augmented views of the same user are considered as a
pair of positive samples for contrastive learning, thereby improving
the SR model. The framework is shown in Figure 2 (a).

Specifically, given a sequence s𝑢 of user 𝑢, we select a subset
of items within s𝑢 with a pre-defined ratio 𝜌 , and the position in-
dices of the selected items within the sequence are recorded as a𝑢1 .
Next, we employ the context-aware diffusion model to generate
items that align with the context information. The generated items
are then used to replace the original items at a𝑢1 positions of se-
quence s𝑢 , resulting the augmented sequence s𝑢1 . That is, the sole
distinction between the original sequence s𝑢 and the augmented
sequence s𝑢1 is the replacement of selected items from s𝑢 with
context-aligned items generated by the diffusion model. The details
of the proposed diffusion model will be introduced in Sec. 4.3.2. By
repeating a similar operation, we can obtain another augmented
view s𝑢2 with respect to another set of selected position indices a𝑢2 .
Note that our method takes into account contextual information
and sequential dependencies. Therefore, the generated augmented
views do not disrupt the user’s interest preferences and interest
evolution. Consequently, two augmented views s𝑢1 and s𝑢2 of user 𝑢
can be considered as a pair of rational positive samples, and their
representations should be brought closer.

We adopt the standard contrastive loss function to maximize the
representation agreement between two different augmented views
of the same user sequence and minimize the agreement between the
augmented sequences derived from different users. Specifically, for
s𝑢1 and s𝑢2 of user 𝑢, we first obtain their embeddings and then input
them to the user sequence encoder defined in Sec. 4.1.2 to generate
their representation h̃𝑢1 and h̃𝑢2 according to Eq. (6). In this way, we
can obtain the representations corresponding to the two augmented
views for all users. For user𝑢, h̃𝑢1 and h̃

𝑢
2 are regarded as the positive

pair, while the remaining 2(𝑁 − 1) augmented representations
within the same batch are treated as negative samples H− , where
𝑁 is the batch size. Then, we employ the inner product to assess
the representation similarity. Finally, we define the loss function
Lcl in a similar manner to the widely used cross-entropy loss as
follows:

L𝑢
cl = − log

exp
(
sim(h̃𝑢1 , h̃

𝑢
2 )
)

exp
(
sim(h̃𝑢1 , h̃

𝑢
2 )
)
+∑

h̃−∈H− exp
(
sim(h̃𝑢1 , h̃−)

) , (9)

where sim(·) denotes the inner product of vectors.

4.3 Context-aware Diffusion Model
In this section, we present our proposed context-aware diffusion
model, which is shown in Figure 2 (b). Our diffusion model gener-
ates items for replacing the original ones by utilizing the context
information of the selected positions, thereby achieving context-
aligned data augmentation. The diffusion process consists of the
forward process with partial position noising and the reverse pro-
cess with context-conditional denoising.

4.3.1 Forward Process with Partial Position Noising. In the forward
process, we gradually add noise to the selected items of the user
sequence. Specifically, at the start of the forward process, we incor-
porate aMarkov transition from discrete input items to a continuous
space using the embedding map, following Diffusion-LM [17]. This

transition is parametrized by 𝑞𝜙 (z0 |s) = N(e, 𝛽0I), where e repre-
sents the embedding vectors corresponding to the sequence s as
defined in Section 4.1.1. This transformation allows us to integrate
the discrete sequence into the standard forward process. At each
forward step 𝑞(z𝑡 |z𝑡−1), we incrementally add Gaussian noise into
the hidden states of the previous time step z𝑡−1, to obtain z𝑡 .

Unlike other diffusionmodels, we selectively apply noise to items
at randomly chosen positions with a certain ratio 𝜌 instead of the
entire sequence, while retaining the items at the remaining positions
(i.e., context information). This approach allows the hidden vectors
at the remaining positions and their relative positions to act as the
conditional guidance during the reverse phase, enabling our model
to utilize context information for controlling item generation.

4.3.2 Reverse Process with Context-Conditional Denoising. In the
reverse process, context is used to guide the restoration of the
conditional distribution at the corresponding positions step by step.
Specifically, the objective of the denoising process is to gradually
remove noise starting from z𝑇 and ultimately recover the original
data distribution, which is formulated as:

𝑝𝜃 (z0:𝑇 ) = 𝑝 (z𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (z𝑡−1 |z𝑡 ) . (10)

We use a learnable model 𝑓𝜃 (z𝑡 , 𝑡) to model the reverse process at
each step:

𝑝𝜃 (z𝑡−1 |z𝑡 ) = N
(
z𝑡−1; 𝜇𝜃 (z𝑡 , 𝑡), Σ𝜃 (z𝑡 , 𝑡)

)
. (11)

Following Diffusion-LM [17], we incorporate a trainable rounding
step 𝑝𝜃 (s|z0) =

∏𝑛
𝑖=1 𝑝𝜃 (𝑣𝑖 |𝑧𝑖 ) in the reverse process to map the

hidden states back to the embedding space, where 𝑝𝜃 (𝑣𝑖 |𝑧𝑖 ) is a
softmax distribution. More details about the rounding step can
be found in [17]. In addition, we set Σ𝜃 (z𝑡 , 𝑡) to untrained time
dependent constants following previous methods [7, 12, 17].

Note that only the hidden vectors corresponding to items se-
lected in the forward process are subjected to the addition of noise.
Therefore, during the reverse process, the hidden vectors of items
at the remaining positions (i.e., context information) as well as their
position encoding can serve as a condition to guide the generation.

Here, we require a model architecture that can effectively encode
the context information for learning the conditional distribution,
thereby guiding the item generation. However, there are complex
sequential dependencies between items in sequential recommen-
dation. If we fail to capture these patterns, we cannot effectively
utilize the context information. Fortunately, the bidirectional Trans-
former (BERT) [4, 30] offers an exciting alternative for achieving
this goal. Due to the equipment of bidirectional self-attention mech-
anism and the position encoding, the bidirectional Transformer can
capture a comprehensive understanding of the context from both
left and right items. Therefore, we employ a bidirectional Trans-
former to model 𝑓𝜃 (z𝑡 , 𝑡). The architecture of the our encoder is
shown in Fig. 2 (c), which is constructed by stacking 𝐿′ BERT layers
together. Each BERT layer consists of a multi-head self-attention
layer and a position-wise feed-forward network. At diffusion step
𝑡 , the encoder receives z𝑡 along with the positional encoding of the
sequence and the diffusion step encoding, and then outputs z𝑡−1.
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To train the diffusion model, we compute the variational lower
bound following previous methods [7, 12, 17]. As we have incorpo-
rated the embedding step and rounding step, the variational lower
bound loss L𝑣𝑙𝑏 introduced in Eq. (4) now becomes as follows:

L′
𝑣𝑙𝑏

= E
𝑞𝜙 (z0 |s)

[
L𝑣𝑙𝑏 (z0) + log𝑞𝜙 (z0 |s) − log𝑝𝜃 (s|z0)

]
. (12)

Following previous methods [7, 17], this training objective can be
further simplified as:

L𝑑 =

𝑇∑︁
𝑡=2

| |z0 − 𝑓𝜃 (z𝑡 , 𝑡) | |2 + ||e − 𝑓𝜃 (z1, 1) | |2 − log𝑝𝜃 (s|z0)

→
𝑇∑︁
𝑡=2

| |z̃0 − 𝑓𝜃 (z𝑡 , 𝑡) | |2 + ||ẽ − 𝑓𝜃 (z1, 1) | |2 − log𝑝𝜃 (s|z0),

(13)
where z̃0, 𝑓𝜃 , and ẽ denote the part of z0, 𝑓𝜃 , and e corresponding to
selected positions, respectively. Note that while we only calculate
the loss with respect to the selected positions in the first term, the
reconstruction of the selected items z̃0 also takes into account the
remaining items (i.e., context information) of the sequence due to
the bidirectional self-attention mechanism.

4.3.3 Generating Augmented Views. During contrastive learning,
the diffusion model acts as a data generator to generate reason-
able augmented views, thereby improving the contrastive learning.
Given the user sequence s, we target to generate context-aligned
items for arbitrary position indices 𝜏 . We first randomly sample
z̃𝑇 ∼ 𝑁 (0; I) to replace the item embeddings e with respect to
selected position indices 𝜏 to obtain z𝑇 . Then, we can iterate the
reverse procedure until we reach the initial state z0. Following
DiffuSeq [7], for each step, we adopt the following operations: 1)
performing the rounding step (defined in Sec. 4.3.2) on z𝑡 to map it
back to item embedding space; 2) replacing the part of recovered
z𝑡−1 that does not belong to selected positions 𝜏 with the original
item embeddings, thereby preserving context information. Note
that due to the different initial random noise, the generated items
with the same context information will exhibit a certain level of
diversity, which is also important for contrastive learning. Finally,
through the substitution of generated items into the corresponding
positions of the original sequence, an augmented sequence is ob-
tained. Performing the same operation twice with different selected
positions 𝜏 for the same user results in a pair of positive samples.

4.4 End-to-End Training
As both of the diffusion model and SR model rely on item embed-
dings, employing separate sets of item embeddings would result in
a misalignment between the representation spaces of two models.
To overcome this challenge, we propose to share item embeddings
between the diffusion model and SR model, and train the full frame-
work in an end-to-end manner. Therefore, the objective function is
formulated as:

L = Lrec + 𝛼L𝑐𝑙 + 𝛽L𝑑 , (14)

where 𝛼 and 𝛽 are hyperparameters that determine the weightings.
Lrec and L𝑐𝑙 represent the loss for the sequential recommendation
(SR) task and the contrastive learning task, respectively. L𝑑 is the
loss for the diffusion model. The training of the diffusion model

Table 1: Dataset description.

Datasets #Users #Items #Actions Avg. Length Density

ML-1m 6,040 3,953 1,000,209 165.6 4.19%
Beauty 22,363 12,101 198,502 8.8 0.07%
Sports 35,598 18,357 296,337 8.3 0.05%
Toys 19,412 11,924 167,597 8.6 0.07%
Yelp 30,431 20,033 316,354 10.4 0.05%

aims to learn better conditional distributions, thereby generating
more reasonable augmented samples for contrastive learning.

Note that our model, due to the introduction of diffusion model-
based data augmentation, has a longer training time compared to
random augmentation-based SR models like CL4SRec [36]. How-
ever, the training time is comparable to that of diffusion-based
recommendation methods like DreamRec [39]. Additionally, our
data augmentation and contrastive learning are only performed
during training. During model inference, the recommendation re-
sults are directly produced by the SR model, without involving the
diffusion model. Consequently, our method has a much faster infer-
ence time compared to other diffusion-based SR models [39] and is
comparable to random augmentation-based SR methods [36].

5 EXPERIMENTS
5.1 Experimental Settings
5.1.1 Datasets. We conduct experiments on five real-world public
datasets, including MovieLens, Beauty, Sports, Toys, and Yelp. The
statistics of these datasets are shown in Table 1. These datasets
encompass a wide range of application scenarios. The MovieLens1
dataset is a stable benchmark dataset which collects movie ratings
provided by users. Beauty, Sports, and Toys datasets are obtained
from Amazon2, one of the largest e-commerce platforms globally.
Yelp is a renowned dataset primarily used for business recommen-
dation. We adopt the same preprocessing method as employed in
numerous previous studies [21, 36], filtering items and users with
fewer than five interaction records.

5.1.2 EvaluationMetrics. To evaluate the performance of ourmodel
and baseline models, we employ widely recognized evaluation met-
rics: Hit Rate (HR) and Normalized Discounted Cumulative Gain
(NDCG), and report values of HR@k and NDCG@k for k=5 and 10.
We use the standard leave-one-out strategy, utilizing the last and
second-to-last interactions for testing and validation, respectively,
while the remaining interactions serve as training data. To ensure
unbiased evaluation, we rank all items in the item set and compute
the metrics based on the rankings across the entire item set.

5.1.3 Baseline Methods. To ensure a comprehensive assessment,
we compare our method with eleven baseline methods, which can
be divided into three categories: classical methods (BPR-MF, Caser,
SASRec, BERT4Rec), contrastive learning based methods (S3-Rec,
CL4SRec, CoSeRec, DuoRec, MCLRec), and diffusion based methods
(DiffuASR, DreamRec).

1https://grouplens.org/datasets/movielens/
2http://jmcauley.ucsd.edu/data/amazon/
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Table 2: Performance comparison of different methods on five datasets. CaDiRec achieves state-of-the-art results among all
baseline models, as confirmed by a paired t-test with a significance level of 0.01.

Dataset Metric BPR-MF Caser SASRec BERT4Rec S3-Rec CL4SRec CoSeRec DuoRec MCLRec DiffuASR DreamRec CaDiRec Improv.

ML-1m

HR@5 0.0164 0.0836 0.1112 0.0925 0.1082 0.1147 0.1162 0.1216 0.1298 0.1105 0.1205 0.1504 15.9%
ND@5 0.0097 0.0451 0.0645 0.0522 0.0624 0.0672 0.0684 0.0702 0.0824 0.0637 0.0813 0.1001 21.5%
HR@10 0.0354 0.1579 0.1902 0.1804 0.1961 0.1978 0.1952 0.1996 0.2047 0.1892 0.2006 0.2282 11.5%
ND@10 0.0158 0.0624 0.0906 0.0831 0.0922 0.0932 0.0974 0.1003 0.1055 0.0903 0.1077 0.1251 16.2%

Beauty

HR@5 0.0122 0.0256 0.0384 0.0360 0.0387 0.0401 0.0404 0.0422 0.0437 0.0388 0.0440 0.0495 12.5%
ND@5 0.0071 0.0147 0.0249 0.0216 0.0244 0.0258 0.0265 0.0264 0.0278 0.0251 0.0274 0.0314 12.9%
HR@10 0.0298 0.0342 0.0628 0.0601 0.0646 0.0651 0.0648 0.0669 0.0689 0.0633 0.0687 0.0718 4.2%
ND@10 0.0132 0.0236 0.0321 0.0308 0.0327 0.0322 0.0334 0.0336 0.0357 0.0316 0.0352 0.0386 8.1%

Sports

HR@5 0.0095 0.0154 0.0225 0.0217 0.0173 0.0221 0.0245 0.0232 0.0249 0.0217 0.0248 0.0276 10.8%
ND@5 0.0062 0.0124 0.0142 0.0143 0.0112 0.0129 0.0159 0.0154 0.0161 0.0138 0.0151 0.0183 13.7%
HR@10 0.0193 0.0261 0.0339 0.0359 0.0311 0.0383 0.0372 0.0362 0.0382 0.0322 0.0374 0.0426 11.2%
ND@10 0.0091 0.0138 0.0174 0.0181 0.0147 0.0173 0.0205 0.0189 0.0197 0.0166 0.0191 0.0233 13.7%

Toys

HR@5 0.0102 0.0169 0.0453 0.0461 0.0443 0.0468 0.0474 0.0459 0.0491 0.0448 0.0497 0.0522 5.0%
ND@5 0.0061 0.0106 0.0306 0.0311 0.0294 0.0317 0.0323 0.0322 0.0327 0.0312 0.0316 0.0356 8.9%
HR@10 0.0135 0.0271 0.0675 0.0665 0.0693 0.0684 0.0695 0.0681 0.0702 0.0667 0.0643 0.0785 11.8%
ND@10 0.0094 0.0140 0.0374 0.0368 0.0375 0.0388 0.0401 0.0385 0.0412 0.0382 0.0402 0.0441 7.0%

Yelp

HR@5 0.0127 0.0151 0.0161 0.0186 0.0199 0.0201 0.0198 0.0199 0.0209 0.0157 0.0174 0.0238 13.9%
ND@5 0.0074 0.0096 0.0100 0.0118 0.0118 0.0124 0.0120 0.0123 0.0129 0.0102 0.0116 0.0149 15.5%
HR@10 0.0273 0.0253 0.0274 0.0338 0.0291 0.0349 0.0323 0.0342 0.0354 0.0268 0.0245 0.0387 9.3%
ND@10 0.0121 0.0129 0.0136 0.0171 0.0168 0.0181 0.0179 0.0189 0.0177 0.0133 0.0152 0.0197 4.2%

• BPR-MF [24]. It employs matrix factorization to model users
and items, and uses the pairwise Bayesian Personalized Ranking
(BPR) loss to optimize the model.

• SASRec [14]. It is the first work to utilize the self-attention
mechanism for sequential recommendation.

• Caser [28]. It utilizes a CNN-based approach to model high-order
relationships in the context of sequential recommendation.

• BERT4Rec [27]. It employs the BERT [4] framework to capture
the context information of user behaviors.

• S3-Rec [42]. It leverages self-supervised learning to uncover
the inherent correlations within the data. However, its primary
emphasis lies in integrating the user behavior sequence and
corresponding attribute information.

• CL4SRec [36]. It proposes three random augmentation operators
to generate positive samples for contrastive learning.

• CoSeRec [21]. It introduces two informative augmentation op-
erators leveraging item correlations based on CL4SRec. We com-
pare with these informative augmentations.

• DuoRec [23]. It combines a model-level augmentation and a
novel sampling strategy for choosing hard positive samples.

• MCLRec [22]. It integrates both data-level and model-level aug-
mentation strategies, utilizing CL4SRec’s random data augmen-
tation for the input sequence and employing MLP layers for
model-level augmentation.

• DiffuASR [19]. It leverages the diffusion model to generate
pseudo items and concatenates them at the beginning of raw se-
quences. Then, the extended sequences are fed into a downstream
recommendation model for next item prediction.

• DreamRec [39]. It directly utilizes the diffusion model to gener-
ate the next item based on the historical interactions.

5.1.4 Implementation Details. We implement all baseline meth-
ods according to their released code. The embedding size for all
methods is set to 64. Our method utilizes a Transformer architec-
ture for the SR model, comprising 2 layers and 2 attention heads
each layer. Meanwhile, our diffusion model employs a bidirectional
Transformer with 1 layer and 2 attention heads. The total num-
ber of diffusion steps is set to a fixed value of 1000. We tune the
coefficients of the two critical terms in the loss function, 𝛼 and
𝛽 within the range of [0.1, 0.2, 0.4, 0.6, 0.8, 1.0]. Additionally, we
explore the substitution ratio 𝜌 within the range of [0, 0.1, 0.2, 0.4,
0.6, 0.8]. The Dropout rate is chosen from the set {0.1, 0.2, 0.3, 0.4,
0.5} for both the embedding layer and the hidden layers. We set the
training batch size to 256 and employ the Adam optimizer with a
learning rate of 0.001. Following most previous works [14], we set
the max sequence length to 50 for three Amazon datasets and Yelp,
and to 200 for the MovieLens dataset. For sequences with fewer
interactions than the maximum sequence length, we will pad them
with a padding token to match the max sequence length.

It is noteworthy that for the recommendation task, the majority
of baseline models employ the negative sampling strategy during
the training process. Specifically, for each positive sample, one neg-
ative sample is randomly selected, and optimization is performed
using the Binary Cross-Entropy (BCE) loss. However, some meth-
ods, such as DuoRec, do not utilize negative sampling. Instead, they
calculate the probability of each item across the entire item set using
the softmax function. This approach, however, becomes impracti-
cal when dealing with considerably large item sets. In our initial
experiments, we observed that the two distinct training strategies
significantly impact the outcomes of the recommendation task,
complicating our ability to accurately evaluate the effectiveness of
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Table 3: Ablation study on five datasets.

Metric w/o
CG

w/o
B-Enc

w/o
L𝑑

w/o
L𝑐𝑙

CaDiRec

ML-1m HR@10 0.1762 0.2203 0.1757 0.1932 0.2282
ND@10 0.0861 0.1212 0.0855 0.0982 0.1251

Beauty HR@10 0.0647 0.0695 0.0644 0.0673 0.0718
ND@10 0.0355 0.0365 0.0353 0.0359 0.0386

Sports HR@10 0.0361 0.0399 0.0363 0.0391 0.0426
ND@10 0.0202 0.0211 0.0199 0.0208 0.0233

Toys HR@10 0.0698 0.0738 0.0695 0.0721 0.0785
ND@10 0.0398 0.0419 0.0396 0.0412 0.0441

Yelp HR@10 0.0304 0.0351 0.0300 0.0312 0.0387
ND@10 0.0149 0.0172 0.0148 0.0153 0.0197

the contrastive learning approach. To facilitate a fair comparison
focused solely on assessing the impact of contrastive learning, it
is crucial to standardize the training strategy across all methods.
Specifically, we employ the BCE loss with the negative sampling
strategy (defined in Equation (8)) for all methods.

5.2 Experimental Results
We run each experiment five times and report the average results.
The comparison results across all datasets are presented in Table 2.
Based on these results, we make the following observations:
• Our method consistently outperforms all eleven baseline mod-
els across all datasets. Additionally, a paired t-test reveals that
our method achieves significantly better performance than the
second-best result, with a significance level of 0.01.

• Classical methods (BPR-MF, Caser, SASRec, BERT4Rec) that do
not employ contrastive learning tend to perform poorly com-
pared to methods that integrate data augmentation and con-
trastive learning. This suggests that contrastive learning, serving
as an auxiliary task, facilitates more comprehensive learning of
user sequence representations in the presence of limited data,
thereby improving sequential recommendation.

• Our method consistently outperforms contrastive learning-based
baselines (S3-Rec, CL4SRec, CoSeRec, DuoRec, MCLRec) across
all metrics on all datasets. CL4SRec introduces three random
data augmentation operations for contrastive learning based
on SASRec, achieving better performance. CoSeRec takes into
account item similarity based on random augmentation, outper-
forming CL4SRec. DuoRec and MCLRec further improve con-
trastive learning-based sequential recommendation by incor-
porating model-level learnable augmentation, resulting in cer-
tain improvements. However, all these baseline models neglect
context information during augmentation, which may lead to
unreasonable positive pairs. Our model, in contrast, leverages
context information to guide the generation of augmented views,
resulting in superior performance.

• Our model performs significantly better than existing diffusion-
based methods (DiffuASR, DreamRec). DiffuASR does not per-
form well, likely because its augmentation strategy resembles
the reverse multi-step sequential recommendation task, which

is extremely challenging and prone to introducing noisy data.
Furthermore, DiffuASR feeds these extended sequences to the
recommendation model, which may lead to error accumulation.
DreamRec, on the other hand, directly uses the diffusion model to
generate the next item based on historical items, thus performing
better than DiffuASR. Unlike these two diffusion-based baselines,
our method uses the diffusion model to generate more reason-
able augmented user sequences for better contrastive learning.
With context guidance, CaDiRec generates alternative items that
adhere to the learned context-conditional distribution. The re-
sults show that CaDiRec consistently outperforms both diffusion-
based baselines across all datasets.

5.3 Ablation Study
In this section, we demonstrate the effectiveness of our model by
comparing its performance with five different versions across five
datasets. The results are shown in Table 3, where “w/o CG” denotes
removing context guidance, “w/o B-Enc” denotes removing the
BERT encoder (utilizing an MLP encoder instead), “w/o L𝑑 ” means
removing the diffusion loss term, and “w/o L𝑐𝑙 ” means remov-
ing the contrastive learning loss term. Specifically, when context
information is removed, the model’s performance significantly de-
creases across all datasets, highlighting the substantial contribution
of context information. The context guidance allows the model to
generate more reasonable augmented views, thus enhancing the
quality of contrastive learning.When using anMLP encoder instead
of the BERT encoder to model context information, performance
also declines, indicating that the BERT encoder is more effective at
capturing contextual dependencies, thereby providing better guid-
ance for data augmentation. Furthermore, removing L𝑑 results in
a performance drop because the diffusion model is not involved
in the training update, equivalent to random augmentation, which
can lead to unreasonable augmented positive sample pairs. Finally,
the decline in performance upon removing L𝑐𝑙 underscores the
importance of the contrastive learning task, which has been vali-
dated in many previous studies [23]. Overall, the results indicate
that removing any component reduces the model’s performance,
thereby validating the effectiveness of each module.

5.4 Hyperparameter Study
In this section, we investigate the impacts of three important hyper-
parameters (𝛼 , 𝛽 , and 𝜌) on HR@10 and NDCG@10 across all five
datasets. Here, 𝛼 represents the weight of the contrastive learning
loss, 𝛽 is the weight of the diffusion loss, and 𝜌 is the substitu-
tion ratio. The results are shown in Figure 3. We observe that as 𝛼
increases, HR@10 and NDCG@10 initially rise slightly and then
decline across all datasets, with the optimal value at approximately
𝛼 = 0.2. 𝛽 controls the weight of the diffusion loss in the total loss.
As 𝛽 varies, HR@10 and NDCG@10 values show minimal changes,
with an overall trend of initial increase followed by a slight de-
cline. The model achieves optimal performance on all datasets with
𝛽 ≤ 0.4. As the substitution ratio 𝜌 gradually increases from 0 to 0.8
(note that 𝜌 = 1 represents removing context, as shown in the abla-
tion study), the model’s performance initially improves and then
declines. The optimal performance is observed when 𝜌 is approxi-
mately 0.1 to 0.2. This can be explained by the reduction of context
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Figure 3: Hyperparameter study of 𝛼 , 𝛽 , and 𝜌 on five datasets.

information as 𝜌 increases; without adequate context guidance, the
model is unable to generate reasonable positive samples. When
𝜌 = 0, no replacements are made, which is equivalent to not using
contrastive learning, resulting in poor performance. Therefore, to
enhance the effectiveness of contrastive learning, it is advisable to
select an appropriate 𝜌 for data augmentation. Additionally, the
metrics for the MovieLens dataset vary differently with changes in
hyperparameters compared to the other four datasets. This differ-
ence is due to the fact that the other four datasets are sparse, while
MovieLens is relatively dense.

5.5 Robustness w.r.t. User Sequence Length
To further examine the robustness of our model against varying
degrees of data sparsity, particularly its performance with limited
interaction records, we categorize user sequences into three groups
based on their length and analyze the evaluation results for each
group. Figure 4 presents the comparison results on the four sparse
datasets (excluding MovieLens, as it is a dense dataset). By com-
paring our model with representative baseline models, including
the strongest baseline MCLRec, we make the following observa-
tions: 1) The performance of all models deteriorates as interaction
frequency decreases, indicating the influence of data sparsity on
model performance. 2) Our model consistently outperforms the
baseline models in each user group. Even for the group with the
most limited data (sequence length of 5), our model maintains a
significant lead, demonstrating the positive impact of our context-
aware diffusion-based contrastive learning approach in addressing
data sparsity. This finding underscores the robustness of our model
across various degrees of data sparsity in user sequences.

Figure 4: Performance comparison on different user groups.

Figure 5: Visualization of learned sequence representations.

5.6 Sequence Representation Visualization
To further analyze the impact of context information on repre-
sentation learning, we visualize the user sequence representations
learned by our model with and without context guidance. For both
versions of the model, we train it for 300 epochs in an end-to-end
manner and utilize t-SNE [29] to reduce the learned user repre-
sentations to two-dimensional space. Due to space limitations, the
results for Beauty and Toys are presented in Figure 5. Intuitively,
the embeddings with and without context exhibit different levels
of dispersion in the visualizations. The embeddings without con-
text appear overly compact, while the embeddings with context
are comparatively more dispersed, suggesting richer and more in-
formative representations. This pattern is consistent across both
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datasets. This may be because augmentations without context re-
semble random augmentations, which easily generate unreasonable
positive sample pairs. In such cases, the contrastive learning ob-
jective forcibly brings together dissimilar user sequences, leading
to overly compact user representations in the embedding space
and even a tendency for representation collapse. Conversely, using
context information to guide the generation of augmented views
results in more reasonable augmentations, effectively addressing
this issue and preventing representation collapse.

6 CONCLUSION
In this paper, we propose a context-aware diffusion-based con-
trastive learning method for sequential recommendation. We em-
ploy a diffusion model to generate more reasonable augmented
sequences through conditional generation, thereby improving con-
trastive learning. We conduct extensive experiments and analyses
on five public benchmark datasets. The results demonstrate the
advantages of our proposed method over existing baselines.
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