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ABSTRACT

Knowledge distillation aims to train a compact student network using soft super-
vision from a larger teacher network and hard supervision from ground truths.
However, determining an optimal knowledge fusion ratio that balances these super-
visory signals remains challenging. Prior methods generally resort to a constant
or heuristic-based fusion ratio, which often falls short of a proper balance. In this
study, we introduce a novel adaptive method for learning a sample-wise knowledge
fusion ratio, exploiting both the correctness of teacher and student, as well as how
well the student mimics the teacher on each sample. Our method naturally leads to
the intra-sample trilateral geometric relations among the student prediction (S),
teacher prediction (T ), and ground truth (G). To counterbalance the impact of
outliers, we further extend to the inter-sample relations, incorporating the teacher’s
global average prediction (T̄ ) for samples within the same class. A simple neural
network then learns the implicit mapping from the intra- and inter-sample rela-
tions to an adaptive, sample-wise knowledge fusion ratio in a bilevel-optimization
manner. Our approach provides a simple, practical, and adaptable solution for
knowledge distillation that can be employed across various architectures and model
sizes. Extensive experiments demonstrate consistent improvements over other loss
re-weighting methods on image classification, attack detection, and click-through
rate prediction.

1 INTRODUCTION

Knowledge distillation (KD) (Hinton et al., 2015) is a widely used machine learning technique that
aims to transfer the informative knowledge from a cumbersome model (i.e., teacher) to a lightweight
model (i.e., student). The student is trained by both imitating the teacher’s behavior and minimizing
the difference between its own predictions and the ground truths. This is achieved by optimizing a
convex combination of two losses: L = αLKD + (1 − α)LGT, where α ∈ [0, 1] is the knowledge
fusion ratio balancing the trade-off between the two different supervision signals.

Determining the knowledge fusion ratio α is critical for training. The most straightforward method is
to pre-set an identical value for all training samples (Hinton et al., 2015; Huang et al., 2022; Clark
et al., 2019; Romero et al., 2014; Park et al., 2019; Lassance et al., 2020). Other works, such as
ANL-KD (Clark et al., 2019) and FitNet (Romero et al., 2014), gradually decrease α from 1 to 0
through an annealing factor. Recent studies (Lukasik et al., 2021; Zhou et al., 2021; Lu et al., 2021)
imply that a uniform knowledge fusion ratio across all samples is sub-optimal and cannot well capture
the nuanced dynamics of the knowledge transfer process, thus designing the knowledge fusion ratio
in a more fine-grained manner. For instance, ADA-KD (Lukasik et al., 2021) assigns a higher α
to a class if the teacher has a higher correctness on that class. WLS-KD (Zhou et al., 2021) takes
both the teacher’s and student’s correctness into consideration, and α is increased if the teacher

∗Equal contribution with random order.
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Figure 1: Motivation experiment on CIFAR-100 with a ResNet-34 teacher and a ResNet-18 student.
The student is trained with varying knowledge fusion ratio values (α). Data is first partitioned into D
(where the teacher predicts correctly) and D′ (incorrect predictions), and further categorized into five
equalized groups based on the student-teacher prediction discrepancies (ST ), respectively. Our claim
is that determining α greatly depends on ST and the correctness of teacher predictions.

outperforms the student on a sample, otherwise decreased. RW-KD (Lu et al., 2021) analyzes the
same information as WLS-KD yet employs a meta-learning method to learn the sample-wise α.

However, existing methods largely ignore the discrepancy between the student’s prediction (S) and
the teacher’s prediction (T ), denoted as ST , when determining α. We argue that this oversight is
significant, as making the student imitate the teacher lies at the heart of KD; thus intuitively, the ST
discrepancy should offer valuable insights into balancing the two supervisory signals. Empirical
results on CIFAR-100 (Krizhevsky, 2009) further verify our argument. The details of the motivation
experiment are demonstrated at the end of this section. Derived from our observations, we draw the
following insights:

• If the teacher predicts correctly, a higher ST discrepancy indicates the higher learning
potential from the teacher, favoring a larger α. A lower discrepancy indicates less potential
to learn from the teacher and value in using the ground truth, thus a smaller α is preferred.

• If the teacher predicts incorrectly, knowledge from the teacher is misleading, and thus a
smaller α is advisable.

• Regardless of the situation, determining a proper sample-wise value α relies on not only the
teacher’s or student’s performances but also the value of ST .

Consequently, our findings suggest that the ST discrepancy offers valuable insights for determining
the knowledge fusion ratio α. In light of the emphasized importance of student-ground truth (SG)
and teacher-ground truth (T G) relations in existing studies (Zhou et al., 2021; Lu et al., 2021), we
propose TGeo-KD, which captures all three relations aforementioned and naturally leads to model the
intra-sample Trilateral Geometry among the signals from the student (S), teacher (T ), and ground
truth (G). To enhance the model stability against outliers, we further incorporate the teacher’s global
average prediction for a given class as an additional reference, abbreviated as T̄ , enriching the
geometric relations at both intra- and inter-sample levels. Based on the insights from the motivation
experiment, we also argue that learning the sample-wise α is quite involved and cannot be achieved
by merely heuristic rules. To this end, we propose to learn the fusion ratio by a neural network (NN)
and formulate KD as a bilevel objective that leverages the trilateral geometric information. As a result,
the student is influenced by a tailored blend of knowledge from both the teacher and the ground truth.
Our proposed TGeo-KD, an end-to-end solution, is versatile and proves superior to other re-weighting
methods in various tasks, from image classification to click-through rate prediction. To summarize,
the main contributions of our work are as follows:

• We introduce TGeo-KD, a novel method for learning sample-wise knowledge fusion ratios
in KD. Leveraging the trilateral geometry, our method encapsulates the geometric relations
among the signals from the student, teacher, and ground truth.

• We exploit the trilateral geometry at both intra-sample and inter-sample levels, mitigating
the impact of outliers in training samples towards a more effective knowledge fusion.

• We conduct comprehensive experiments across diverse domains to demonstrate the consistent
superiority over other loss re-weighting methods, as well as to highlight its versatility and
adaptability across different architectures and model sizes.
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Figure 2: A comparison between prior works and our proposed TGeo-KD. The first two blocks show
the relations captured in different methods for learning the knowledge fusion ratio from a geometric
view on a sample. The third block shows crosscheck comparison on different method attributes. The
details for representing each point and computing the geometric relation are demonstrated in Sec. 3.

Details of Motivation Experiment. We conduct our motivation experiment on CIFAR-
100 (Krizhevsky, 2009). Specifically, we partition the dataset into two subsets, D and D′, where D
consists of samples on which the pre-trained teacher (ResNet-34) has correct predictions, whereas D′

includes those with incorrect predictions. Initially, with α = 0.5, we train a student model (ResNet-
18) over 50 epochs to imbibe preliminary knowledge. We then compute the Euclidean distance
between the student’s and teacher’s predicted class probabilities across all samples, designating this
as the ST discrepancy. Based on ascending ST values, we further split D and D′ into five equalized
groups g1 ∼ g5 and g′1 ∼ g′5, respectively. Subsequently, the student is further trained with varying α
values adjusted from {0.1, 0.3, 0.5, 0.7, 0.9}, yielding five distinct student models. Upon evaluating
these students across all five g groups and five g′ groups, we obtain 25 bins for each subfigure in
Fig. 1, which reveals that: (i) For samples in D, students trained with smaller α values (i.e., 0.1, 0.3)
outperformed on groups with lower ST discrepancies (i.e., g1, g2), whereas larger α values (i.e.,
0.7, 0.9) were beneficial for groups with higher discrepancies (i.e., g4, g5). (ii) For samples in D′, a
smaller α (i.e., 0.1, 0.3) demonstrated the best performance on all g′ groups. Our observation shows
a proper sample-wise value α relies on not only the student’s or teacher’s performances but also their
discrepancy, which motivates the design of our proposed method for knowledge fusion learning.

2 PRELIMINARY: REVISITING KNOWLEDGE FUSION RATIO IN KD

The vanilla KD (Hinton et al., 2015) transfers knowledge from a pre-trained teacher network to
a student by reducing discrepancies between their predictions and aligning with the ground truth.
The student learns through two losses: LKD, the Kullback–Leibler (KL) divergence (Joyce, 2011)
between student and teacher predictions, and LGT, the Cross-Entropy (CE) loss (Good, 1952) from
the ground truth. Formally, denoting D = {(xi,yi)}Ni=1 as the data where yi is the ground truth
label represented as a one-hot vector for each sample, C as the number of classes, zsi and zti as the
logits of the student and teacher, we formulate the two losses in a sample-wise manner as follows:

LKD
i = τ2KL(zsi , z

t
i) = τ2

C∑
j=1

σj(z
t
i/τ) log

σj(z
t
i/τ)

σj(zsi/τ)
, (1)

LGT
i = CE(zsi ,yi) = −

C∑
j=1

yi,j log
(
σj(z

s
i )
)
, (2)

where σ is the softmax function and the temperature τ controls the softness of logits. Then the
overall training objective aims to optimize the student network (parameterized by θ) through a convex
combination of the two losses with a sample-wise fusion ratio αi:

L = min
θ

1

N

N∑
i=1

αiLKD
i + (1− αi)LGT

i . (3)

We present a comparison of prior knowledge fusion methods alongside our work in Fig. 2, empha-
sizing both the geometric relations captured for learning α and their distinctive model attributes.
Evidently, our proposed TGeo-KD overcomes the constraints observed in previous approaches, thus
leading to enhanced performance.
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3 TRILATERAL GEOMETRY GUIDED KNOWLEDGE FUSION

3.1 ADAPTIVE LEARNING FOR KNOWLEDGE FUSION RATIO

To address the limitation of prior works and employing the insights from the motivation experiment
as depicted in Sec. 1, we propose to adaptively learn the knowledge fusion ratio based on trilateral
geometry within (S, T , G) triplet using a separate network. For simplifying the notation, we
consistently denote S := σ(zs) ∈ RN×C and T := σ(zt) ∈ RN×C as the prediction probabilities of
the student and teacher, and G := y ∈ RN×C as the ground truth (i.e., each row is an one-hot vector).
Given a training sample (xi,yi), the knowledge fusion ratio can be correspondingly modeled as
αi = fω(∆i), where fω is one NN parameterized by ω. The final layer of fω employs a sigmoid
activation, ensuring that αi ∈ (0, 1). For brevity, we omit explicitly writing the sigmoid function. ∆i

represents the unique geometric relation among Si, Ti, and Gi.

Our ultimate goal is to find the optimal sample-wise ratios αi = fω(∆i) that enable the student net-
work parameterized by θ to generalize well on test data. This naturally implies a bilevel optimization
problem (Franceschi et al., 2018) with ω as the outer level variable and θ as the inner loop variable:

min
ω

J outer
val (θ∗(ω)) =

1

Nval

Nval∑
i=1

LGT
i , (4)

s.t. θ∗(ω) = argmin
θ

J inner
train (θ, ω) :=

1

Ntrain

Ntrain∑
i=1

fω(∆i)LKD
i +

(
1− fω(∆i)

)
LGT
i . (5)

On the inner level, we aim to train a student network given a fixed ω by minimizing the combined
loss. On the outer level, the loss function on the validation set serves as a proxy for the generalization
error of ω. The goal for TGeo-KD is to find ω to minimize the validation loss. Note that Eq. 4 is an
implicit function of ω as θ∗ depends on ω.

3.2 EXPLOITING TRILATERAL GEOMETRY

For modeling the trilateral geometry of ∆i, we propose to capture both intra-sample and inter-sample
geometric relations. The details are demonstrated as follows.

Intra-sample relations. Given the ith sample, to capture the trilateral geometry of the (Si, Ti, Gi)
triplet, denoting as ∆ST G

i , we capture its three edges as outlined below:

esgi := [Gi − Si] ∈ RC , etgi := [Gi − Ti] ∈ RC , esti := [Ti − Si] ∈ RC . (6)

The three edges represent the student’s correctness, the teacher’s correctness, and the discrepancy
between the student and teacher, respectively. Previous research (Zhou et al., 2021; Lu et al., 2021)
has affirmed the efficacy of the first two edges in guiding the learning of α, while the third concept is
our original contribution. We finally represent ∆ST G

i by also incorporating the exact three vertices
Si, Ti, Gi, to capture the exact probability across all classes for incorporating more information:

∆ST G
i := [esgi ⊕ etgi ⊕ esti ⊕ Si ⊕ Ti ⊕ Gi], (7)

where ⊕ is the concatenation operation.

Inter-sample relations. In addition to intra-sample relations, we argue that inter-sample relations
are also essential for knowledge fusion learning, especially considering the impact of outliers in
training samples. Out-of-distribution samples, which are significantly different from normal training
data, commonly behave as outliers to challenge the generalization capability of a model (Lee
et al., 2018; Wang et al., 2022). In KD, the teacher network may perform poorly on these outliers,
occasionally even with high absolute values of confidence margin. Therefore, blindly using the
teacher’s prediction as the supervisory signal can result in the propagation of misleading knowledge,
thereby disturbing the student’s training process.

To address this issue, we introduce inter-sample geometric relations. For each sample, we associate
it with an additional vertex T̄ci ∈ RC , representing the teacher’s global average prediction for all
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samples of the class (ci) that sample i belongs to. It is essential to understand that while each sample
is linked to its respective class-specific vertex, samples within the same class refer to the same
vertex T̄ci . Consequently, we incorporate an additional triplet, (Si, T̄ci , Gi), to encapsulate these
inter-sample relations. This is achieved by a similar process as before, focusing on the three edges, as
well as incorporating all the vertices as follows:

∆ST̄ G
i := [esgi ⊕ et̄gi ⊕ est̄i ⊕ Si ⊕ T̄ci ⊕ Gi]. (8)

As such, by introducing the teacher’s average prediction at the inter-sample level, the exploitation of
more supportive knowledge can be further facilitated to effectively guide the student training process,
particularly in addressing outliers.

Improved distillation with trilateral geometry. Although we can fully explore the sample-wise
trilateral geometry through intra- and inter-sample trilateral relations, it is still challenging to design
an explicit formulation between these signals and a knowledge fusion ratio as depicted in Sec. 1. We
thus use a simple network fω(·) parameterized by ω, to adaptively learn a flexible and sample-wise
knowledge fusion ratio with the input of geometric relations. The information captured for each
sample can be represented as follows:

∆i := ∆ST G
i ⊕∆ST̄ G

i , (9)

:= [esgi ⊕ etgi ⊕ esti ⊕ et̄gi ⊕ est̄i ⊕ Si ⊕ Ti ⊕ T̄ci ⊕ Gi], (10)

where the redundant terms are removed for brevity. Through inputting ∆i into fω(·), the knowledge
fusion ratio αi can be adaptively learned, and ω is optimized with θ in an end-to-end way.

4 EXPERIMENTS

4.1 TASKS AND EXPERIMENT SETTINGS

Tasks and datasets. To demonstrate the broad applicability of our method, we conduct extensive
experiments on three different tasks. Specifically, we use CIFAR-100 (Krizhevsky, 2009) and
ImageNet (Deng et al., 2009) for image classification in computer vision, HIL (Pan et al., 2015) for
attack detection in cyber-physical systems, and Criteo (Jean-Baptiste Tien, 2014) for click-through
rate (CTR) prediction in recommender systems. Details of datasets and task selection are shown in
Appendix A.1.

Experiment settings. In the experiment setup, the temperatures (τ ) are set as 4.0, 1.5, 1.5, and 2.0
on the four datasets, respectively. In the vanilla KD, the pre-set fusion ratios are 0.2, 0.3, 0.1, and
0.3, respectively. Considering that the original HIL (Pan et al., 2015) and Criteo (Jean-Baptiste Tien,
2014) are imbalanced, we conduct oversampling on the minority class of training set as the data
pre-processing procedure, ensuring all classes have the equal number of samples in a balanced setting.
We conduct the experiments on one NVIDIA RTX-3080 GPU and one RTX-3090 GPU. The detailed
experiment settings can be found in Appendix A.2.

4.2 STUDENT CLASSIFICATION PERFORMANCE

Results on CIFAR-100. We evaluate our proposed TGeo-KD method against numerous established
KD baselines, as illustrated in Table 1. To ascertain the significance of improvement, we conduct a
statistical t-test across five repeated runs, with t-scores being calculated based on the top-1 classifica-
tion accuracy of TGeo-KD and the baseline methods. All computed t-scores surpass the threshold
value t0.05,5, indicating the acceptance of the alternative hypothesis with a statistical significance
level of 5.0%. This furnishes compelling evidence that TGeo-KD consistently demonstrates a marked
enhancement in performance.

Notably, when the teacher (ResNet-56) and student (ResNet-20) models possess relatively similar
architectures, ADA-KD (Lukasik et al., 2021) is the best baseline with a marginal improvement
of 0.07% over the second-best baseline WLS-KD (Zhou et al., 2021). In comparison to ADA-
KD (Lukasik et al., 2021), TGeo-KD illustrates a substantial advantage of 0.76%. As the architectural
gap increases, like between the student ResNet-32 and the teacher ResNet-110, our method’s per-
formance advantage increases to 0.97%, compared to the best baseline. This performance gain
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Table 1: Top-1 classification accuracy (%) on CIFAR-100. We re-implemented the methods denoted
by ∗ and calculated their average results (with standard deviation) over 5 repeated runs. For the
remaining methods, we utilized the results provided or verified by the others (Tian et al., 2020; Zhou
et al., 2021). The best performance is bold, while the second best is underlined.

Method Same architecture style Different architecture styles

Teacher WRN-40-2 ResNet-56 ResNet-110 ResNet-110 ResNet-32×4 ResNet-32×4 ResNet-32×4 WRN-40-2
Student WRN-40-1 ResNet-20 ResNet-32 ResNet-20 ResNet-8×4 ShuffleNetV1 ShuffleNetV2 ShuffleNetV1

Teacher 75.61 72.34 74.31 74.31 79.42 79.42 79.42 75.61
Student 71.98 69.06 71.14 69.06 72.50 70.50 71.82 70.50

FitNet 72.24 69.21 71.06 68.99 73.50 73.59 73.54 73.73
AT 72.77 70.55 72.31 70.22 73.44 71.73 72.73 73.32
SP 72.43 69.67 72.69 70.04 72.94 73.48 74.56 74.52
CC 72.21 69.63 71.48 69.48 72.97 71.14 71.29 71.38
VID 73.30 70.38 72.61 70.16 73.09 73.38 73.40 73.61
RKD 72.22 69.61 71.82 69.25 71.90 72.28 73.21 72.21
PKT 73.45 70.34 72.61 70.25 73.64 74.10 74.69 73.89
AB 72.38 69.47 70.98 69.53 73.17 73.55 74.31 73.34
FT 71.59 69.84 72.37 70.22 72.86 71.75 72.50 72.03

NST 72.24 69.60 71.96 69.53 73.30 74.12 74.68 74.89
CRD 74.14 71.16 73.48 71.46 75.51 75.11 75.65 76.05

Vanilla KD 73.54 70.66 73.08 70.67 73.33 74.07 74.45 74.83
ANL-KD∗ 72.81±0.25 72.13±0.18 72.50±0.21 72.28±0.21 75.07±0.26 72.58±0.23 73.11±0.14 75.27±0.32

ADA-KD∗ 74.67±0.19 72.22±0.21 73.19±0.12 72.29±0.27 75.78±0.34 71.45±0.16 72.20±0.24 75.49±0.28

WLS-KD 74.48 72.15 74.12 72.19 76.05 75.46 75.93 76.21
RW-KD∗ 73.92±0.22 70.33±0.26 71.78±0.15 71.24±0.16 74.86±0.29 70.45±0.25 70.69±0.17 74.15±0.29

TGeo-KD 75.43±0.16 72.98±0.14 75.09±0.13 73.55±0.20 77.27±0.25 76.83±0.17 76.89±0.14 77.05±0.23

Table 2: Top-1 and Top-5 classification accuracy on ImageNet. We re-implemented the methods
denoted by ∗ and used the author-provided or author-verified results for the others (Zhou et al., 2021).

Teacher: ResNet-34 → Student: ResNet-18

Method Top-1 ACC Top-5 ACC

Teacher 73.31 91.42
Student 69.75 89.07

AT 71.03 90.04
NST 70.29 89.53
FSP 70.58 89.61
RKD 70.40 89.78

Overhaul 71.03 90.15
CRD 71.17 90.13

Vanilla KD 70.67 90.04
ANL-KD∗ 71.83±0.22 90.21±0.26

ADA-KD∗ 71.96±0.17 90.45±0.21

WLS-KD 72.04 90.70
RW-KD∗ 70.62±0.22 89.76±0.15

TGeo-KD 72.89±0.15 91.80±0.04

Teacher: ResNet-50 → Student: MobileNetV1

Method Top-1 ACC Top-5 ACC

Teacher 76.16 92.87
Student 68.87 88.76

AT 70.18 89.68
FT 69.88 89.50
AB 68.89 88.71

RKD 68.50 88.32
Overhaul 71.33 90.33

CRD 69.07 88.94
Vanilla KD 70.49 89.92
ANL-KD∗ 70.40±0.15 89.25±0.22

ADA-KD∗ 71.08±0.24 90.17±0.16

WLS-KD 71.52 90.34
RW-KD∗ 70.15±0.16 89.40±0.19

TGeo-KD 72.46±0.14 90.95±0.17

further escalates to 1.26% when the student ResNet-20 and the teacher ResNet-110, underscoring the
advantage of our TGeo-KD particularly when dealing with the increasing architectural disparities
between the student and teacher. Moreover, our technique excels in hetero-architecture KD scenarios,
wherein knowledge is distilled from either ResNet-32×4 or WRN-40-2 models into ShuffleNet. In
these cases, our method consistently demonstrates performance enhancements of 1.37%, 0.96%, and
0.84%, respectively, compared to the strongest baseline WLS-KD (Zhou et al., 2021).

Results on ImageNet. To further demonstrate the effectiveness of our approach on larger datasets,
we extend our experiments to ImageNet, adhering to the setup outlined by Zhou et al. (2021). As
depicted in Table 2, TGeo-KD consistently outperforms all competing baselines. Notably, compared
with the strongest baseline WLS-KD (Zhou et al., 2021), TGeo-KD exhibits the performance improve-
ment of 1.10% when the teacher (ResNet-34) and student (ResNet-18) share the same architecture
style. Similarly, in a hetero-architecture KD experiment with ResNet-50 and MobileNetV1 as teacher
and student respectively, our method realizes an improvement of 0.94%.
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Table 3: Result comparison on HIL and Criteo under Teacher (12-layer BERT) → Student (4-layer
BERT). The best performance is bold, while the second best is underlined. “⇑” indicates the metric
value the higher the better, while “⇓” indicates the lower the better. Our TGeo-KD demonstrates a
statistical significance for p ≤ 0.01 compared to the strongest baseline based on the paired t-test.

Dataset HIL Criteo

Method ACC (%) ⇑ AUC (%) ⇑ NLL ⇓ ACC (%) ⇑ AUC (%) ⇑ NLL ⇓
Teacher 88.19 75.23 0.94 78.15 79.08 0.77
Student 87.64 67.58 1.02 69.43 69.02 1.79

Vanilla KD 87.55±0.56 69.52±0.70 1.00±0.04 71.08±0.48 69.42±0.60 1.51±0.05

ANL-KD 87.27±0.23 70.01±0.26 1.02±0.03 72.71±0.35 71.02±0.39 1.08±0.05

ADA-KD 90.15±0.34 70.02±0.21 0.99±0.02 72.15±0.33 71.01±0.35 1.15±0.04

WLS-KD 90.05±0.28 70.70±0.23 1.01±0.05 75.30±0.38 75.03±0.40 0.82±0.04

RW-KD 89.40±0.45 66.03±0.58 1.07±0.06 75.05±0.44 75.11±0.53 0.89±0.07

TGeo-KD 92.39±0.49 71.65±0.28 0.94±0.03 77.80±0.29 77.00±0.32 0.81±0.04

(a) Teacher%, large ST (b) Teacher%, small ST (c) Teacher", large ST (d) Teacher", small ST

Figure 3: Knowledge fusion ratio distributions learned with (dark) and without (light) incorporating
ST during learning α. We first partition all samples into two subsets based on the teacher’s correctness.
In each subset, we sort the samples in descending order based on their ST values and select the top
and bottom 20% as those with large and small discrepancies, respectively.

Results on HIL and Criteo. To illustrate the broad applicability of our proposed TGeo-KD in
diverse application scenarios, we also observe the similar superiority of our method on HIL for
attack detection and Criteo for CTR prediction, as shown in Table 3. For instance, TGeo-KD not
only relatively improves ACC and NLL over ADA-KD (Lukasik et al., 2021) by 2.48% and 5.05%
on HIL, respectively, but also is better than the deeper teacher with the increasing ACC of 4.20%.
Besides, WLS-KD (Zhou et al., 2021) and RW-KD (Lu et al., 2021) are the best methods among all
the baselines on Criteo, approving the effectiveness of adopting sample-wise knowledge fusion ratio.
More results on various network architectures are provided in Appendix A.4.

4.3 FUSION RATIO ANALYSIS WITH PREDICTION DISCREPANCY

To demonstrate the effectiveness of incorporating prediction discrepancy ST between the student
and teacher on learning the knowledge fusion ratio α, we follow the same settings as the motivation
experiment in Sec. 1, for a comprehensive analysis. We first categorize training samples based on the
correctness of teacher predictions and ST on these samples. We then compare the distributions of
fusion ratio learned with and without the consideration of ST , as depicted in Fig. 3. When the teacher
predicts incorrectly, it may transfer misleading knowledge to the student, resulting in a decline in the
student’s performance. By incorporating ST , our proposed TGeo-KD decreases the fusion ratio on
LKD when the discrepancy is either large or small (in Fig. 3(a) and Fig. 3(b)), which suggests that
the student is encouraged to acquire more knowledge from the ground truths. In cases where the
teacher predicts correctly, the fusion ratio typically ranges from 0.4 and 0.8 when not incorporating
ST . The fusion ratio is greater when incorporating ST in situations with a significant discrepancy
between the student and teacher (in Fig. 3(c)). This suggests that the student is expected to emulate
the teacher more closely, as the teacher possesses a greater potential for offering valuable knowledge.
When the discrepancy is smaller, the student is encouraged to rely more on the ground truth, leading
to a decline in the fusion ratio (in Fig. 3(d)). On the contrary, as illustrated in Table 4, the fusion
ratio steadily increases without the incorporation of ST as the training progresses, yet an insufficient
potential can be learned from the teacher.
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Table 4: Comparison of average knowledge fusion ratios with and without ST during the training.
Teacher predictions % % " "

Discrepancy Large Small Large Small

Epoch 100 200 300 400 100 200 300 400 100 200 300 400 100 200 300 400

Without ST 0.51 0.46 0.43 0.42 0.48 0.42 0.40 0.39 0.48 0.55 0.57 0.57 0.52 0.59 0.62 0.64
With ST 0.25 0.19 0.14 0.12 0.19 0.13 0.10 0.08 0.59 0.67 0.71 0.73 0.42 0.33 0.29 0.27

(a) WLS-KD (b) RW-KD (c) TGeo-KD
Figure 4: Knowledge fusion ratio distributions on normal samples (light) and outliers (dark).

4.4 ANALYSIS ON NORMAL SAMPLES AND OUTLIERS

Fusion ratio on normal samples and outliers. To conduct analysis on fusion ratios between
normal samples and outliers, we first create outliers by adding synthetic Gaussian noise as additional
training samples following the setting outlied in the studies (Hendrycks and Gimpel, 2016; Liang
et al., 2018; Vyas et al., 2018). In the context of Gaussian noise based outliers, each RGB value for
every pixel is sampled from an independent and identically distributed Gaussian distribution with
a mean of 0.5 and unit variance, and each pixel value is clipped to the range [0, 1]. As illustrated
in Fig. 4, we compare the final fusion ratio distributions between sample-wise based baselines (i.e,
WLS-KD (Zhou et al., 2021) and RW-KD (Lu et al., 2021)) and our TGeo-KD on CIFAR-100.
Compared to the two baselines, TGeo-KD reports the final fusion ratios for normal samples within
the range of 0.4 and 0.6 typically, which indicates that the student can be effectively guided with the
valuable supervision signals from both the ground truth and the teacher on these normal samples.
Furthermore, the teacher may make incorrect predictions on outliers, which provides misleading
knowledge to the student. With the consideration of ST discrepancy and inter-sample relations,
TGeo-KD reports the fusion ratios below 0.3 on outliers, which suggests that the student is expected
to learn more informative knowledge from the ground truth, resulting in an increased fusion ratio on
LGT. More comparisons about the effect of ST discrepancy and inter-sample relations on outliers
can be found in Appendix A.4.

Prediction discrepancy during the training and testing. Fig. 5 shows the prediction discrepancies
between the student and teacher on normal samples and outliers during training and testing. Compared
to baselines, in Fig. 5(a), our proposed TGeo-KD achieves the smallest discrepancies (i.e., 0.19
during the training and 0.26 during the testing) on normal samples, indicating that the student can
effectively mimic the teacher predictions through learning the knowledge distilled from the teacher.
Furthermore, in Fig. 5(b), although ADA-KD (Lukasik et al., 2021) and RW-KD (Lu et al., 2021) (i.e,
the baselines without inter-sample relations) report fewer discrepancies on outliers during the training,
the teacher may report poor performance on these outliers and transfer misleading knowledge to the
student. With the power of our inter-sample relations, TGeo-KD surpasses these aforementioned
studies during the testing, which indicates that inter-sample relations can protect the student training
process from being disrupted by low-quality knowledge from the teacher, especially on those outliers.

4.5 ABLATION STUDIES

Effect of different relations captured. TGeo-KD adaptively learns the knowledge fusion ratio by
leveraging both intra- and inter-sample relations. To illustrate the effectiveness of each relation, we
conduct experiments to train students under different combinations. As summarized in Table 6, both
intra- and inter-sample relations yield better performance than the standalone student and vanilla
KD models. Specifically, when we incorporate the ST relation, there is a notable increase in top-1
accuracy from 73.92% to 75.28%. This suggests the importance of accounting for the discrepancies
between the student and teacher models. The performance improves to 76.83% when the inter-sample
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(a) Normal samples. (b) Outliers.
Figure 5: Prediction discrepancies on normal samples and outliers during the training and testing.

Table 5: Top-1 classification accuracy (%) com-
parison among different modellings of fω(·)
through attention and MLP.

CIFAR-100 ImageNet

1-head Atten. 73.00 70.96
2-head Atten. 73.63 71.72
3-head Atten. 73.87 72.08

1-layer MLP 72.69 71.74
2-layer MLP 74.31 72.89
3-layer MLP 73.96 72.52

Table 6: Ablation study on relations for learning
α on CIFAR-100. The teacher and student are
ResNet-32×4 and ShuffleNetV1.

SG+T G ∆ST G ∆ST̄ G ACC

Student - - - 70.50
Vanilla KD - - - 74.07

TGeo-KD " - - 73.92
TGeo-KD " " - 75.28
TGeo-KD " " " 76.83

relations are further captured. A deeper dive into how various representations of these intra- and
inter-sample relations affect performance can be found in Appendix A.4.

Comparison between attention mechanism and MLP. We assess various options for modeling
the knowledge fusion ratio generator, fω(·), including attention mechanism as suggested in (Vaswani
et al., 2017) and MLPs with different numbers of layers. For CIFAR-100, the teacher and student are
ResNet-110 and ResNet-32. For ImageNet, the teacher and student are ResNet-34 and ResNet-18.
Based on the results in Table 5, a 2-layer MLP is sufficient in capturing the valuable information
embedded in the trilateral geometry, leading to superior performance across two datasets. Furthermore,
MLP settings generally demonstrate a higher performance compared to attention mechanisms.

5 RELATED WORKS

Knowledge balance in KD. Knowledge distillation techniques have evolved from uniformly
applying fusion ratios across samples (Hinton et al., 2015; Huang et al., 2022; Clark et al., 2019;
Romero et al., 2014; Park et al., 2019; Lassance et al., 2020) to more refined strategies. Methods
like ANL-KD (Clark et al., 2019) and FitNet (Romero et al., 2014) use annealing factors to adjust
fusion ratios. Recent advancements include ADA-KD (Lukasik et al., 2021), which uses class-wise
ratios, and WLS-KD (Zhou et al., 2021), which adjusts based on student’s and teacher’s performance.
RW-KD (Lu et al., 2021) employs meta-learning for adaptive ratio learning. Yet, existing methods
lack a consideration of the comprehensive trilateral relations among the signals from the student,
teacher, and ground truth during the knowledge fusion learning.

Sample relations in KD. The exploitation of sample relations in knowledge distillation has been
a key focus of numerous studies (Zagoruyko and Komodakis, 2017; Zhou et al., 2016; Park et al.,
2019; Heo et al., 2019; Tian et al., 2020). For instance, AT (Zagoruyko and Komodakis, 2017;
Hu et al., 2023) introduces attention transfer to transfer the attention maps from the teacher to the
student, explicitly capturing the sample-level relation. CAMT (Zhou et al., 2016) extends this idea by
incorporating both spatial and channel attention transfer to enhance the student’s performance. Other
studies have also emphasized relational reasoning and contrastive representation as key mechanisms
for better understanding and improving knowledge distillation (Park et al., 2019; Tian et al., 2020).
Despite these advancements in capturing sample relations, none of these studies target on the learning
of the knowledge fusion ratio.
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6 CONCLUSION

We propose an innovative approach named TGeo-KD for learning sample-wise knowledge fusion
ratios during KD, which exploits the trilateral geometry among the signals from the student, teacher,
and ground truth by modeling both intra- and inter-sample geometric relations. Across diverse
domains, TGeo-KD outperforms other re-weighting methods consistently. It offers a simple yet adapt-
able distillation solution that fits various architectures and model sizes, thereby easing deployment
complexities and resource limitations associated with deep neural networks. For the broader impact,
TGeo-KD is effective across a variety of domains, including image classification, attack detection,
and click-through rate prediction. Future research on TGeo-KD will address its focus on inter-sample
relations within classes, exploring cross-class relationships to enhance performance.
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A APPENDIX

A.1 TASKS AND DATASETS

To demonstrate the effectiveness of our method TGeo-KD, we conduct extensive experiments across
three diverse tasks, including image classification, attack detection, and click-through rate (CTR)
prediction. The selection of the three tasks is based on their representations of diverse domains
with different data natures, underlining the versatility of our proposed method. We use a classic and
widely used dataset for each of the above tasks. This section provides the details for each dataset.

CIFAR-100. The open-source benchmark dataset (Krizhevsky, 2009) is widely used for image
classification, which comprises 60,000 color images of 32×32 pixels each. It is categorized into 100
classes, each containing 600 images. Each class is evenly split between the training and test sets, with
500 images for training and 100 for testing. This dataset includes a wide variety of objects, animals,
and scenes, making it an ideal resource for developing and testing models and algorithms.

ImageNet. ImageNet (Deng et al., 2009) is a large-scale dataset commonly used for image classifi-
cation, containing millions of labeled images spanning thousands of categories, such as animals and
scenes, etc. There are roughly 1.2 million training images, 50K validation images, and 150K testing
images.

HIL. The open-source benchmark dataset is generated from the HIL security testbed (Pan et al.,
2015), the representative transmission network with rich operations in a realistic setting, which is
widely used to develop proofs-of-concept for attack detection in industrial control systems. Specifi-
cally, this dataset includes 128 multi-sourced features, including 118 synchrophasor measurements
and 12 descriptive system logs. The event scenarios can be categorized as three classes: normal
operation (class 0), natural fault (class 1), and malicious attack (class 2). Our task is a three-class
classification to identify the class of each event scenario.

As an imbalanced dataset, the normal and fault samples are randomly oversampled to balance the
attack samples in the training set, while the validation and testing sets are not oversampled and
remain imbalanced. To avoid dominating features, data normalization is essential to be performed
to improve the uniformity of features by adjusting all feature values into the range of [0, 1] (i.e.,
min-max normalization (Ioffe and Szegedy, 2015)).

Criteo. Criteo is an online advertising dataset released by Criteo AI Lab 1. It contains feature
values and click feedback for millions of display ads and serves as a benchmark for click-through rate
(CTR) prediction. Each ad within the dataset is characterized by 40 attributes, providing a detailed
description of the data. The first attribute acts as a label, indicating whether an ad was clicked (1) or
not clicked (0), which also automatically forms the two classes in this dataset. The rest attributes
consist of 13 integer features and 26 categorical features. To maintain anonymity, all feature values
are hashed onto 32 bits. The dataset represents a full month of Criteo’s traffic, offering extensive,
real-world insights into online advertising dynamics.

The version we used in this paper is a well-known one that used in a competition on CTR prediction
jointly hosted by Criteo and Kaggle in 2014 2. Following prior works (Guo et al., 2017; Lyu et al.,
2022), the continuous features are first normalized into the range of [0, 1]. Due to the imbalance of
this dataset, we adopt the same strategy as HIL to conduct random oversampling to balance the two
classes in this dataset.

A.2 EXPERIMENT SETTINGS

Our method TGeo-KD can remain robust performance on all datasets, using different hyperparameter
settings as shown in Table 7. This paper introduces three metrics for evaluating the student’s
generalization ability: classification accuracy (ACC), area under the ROC curve (AUC), and negative
log-likelihood (NLL). In order to avoid overfitting of the student, we conduct the early stopping

1https://ailab.criteo.com/ressources/
2https://www.kaggle.com/competitions/criteo-display-ad-challenge/
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Table 7: Hyperparameter settings on different datasets.
Dataset batch size optimizer initial learning rate weight decay dim size

CIFAR-100 128 {Adam, SGD} 1e-1 5e-4 128

ImageNet 256 Adam 1e-1 5e-4 128

HIL 256 {Adam, SGD} 1e-2 {1e-2, 1e-1, 5e-1} 32

Criteo 1024 Adam 1e-3 {1e-5, 1e-3, 1e-2} 64

Table 8: Classification accuracy (%) on DomainNet. All results are reported in terms of average
classification accuracy (with standard deviation) over 5 repeated runs.

Method Clipart Real Sketch Infograph Painting Quickdraw Average

Vanilla KD 50.6±0.2 55.1±0.3 40.7±0.3 17.9±0.2 42.5±0.4 9.8±0.3 34.3±0.3

ANL-KD 52.5±0.4 57.0±0.3 41.9±0.3 19.6±0.2 44.6±0.3 11.3±0.3 37.8±0.3

ADA-KD 53.6±0.2 57.9±0.4 42.3±0.3 20.5±0.2 45.1±0.3 12.4±0.4 38.7±0.4

WLS-KD 53.1±0.4 57.7±0.3 42.8±0.2 21.1±0.1 45.3±0.2 12.0±0.2 38.5±0.3

RW-KD 51.3±0.3 56.2±0.3 41.2±0.2 18.8±0.3 43.7±0.2 10.6±0.3 37.1±0.2

TGeo-KD 55.2±0.3 59.3±0.4 44.6±0.1 21.7±0.3 46.9±0.3 14.1±0.3 40.2±0.3

strategy when the ACC does not improve on the validation set within 10 successive iterations. Our
computation resources include one NVIDIA RTX-3080 GPU and one RTX-3090 GPU.

A.3 GENERALIZATION ABILITY

To demonstrate the generalization ability of our method on unseen data, we conduct additional
experiments in the Out-of-Distribution Detection (OOD) task using DomainNet dataset (Peng et al.,
2019). DomainNet (Peng et al., 2019) is a domain adaptation dataset with six domains (including
Clipart, Real, Sketch, Infograph, Painting, and Quickdraw) and 0.6 million images distributed across
345 categories. In the experiment setup, we adopt a standard leave-one-domain-out manner, and train
our student (teacher: ResNet-50 and student: ResNet-18) on the training set of the source domains
and evaluate the trained student on all images of the held-out target domain. As depicted in Table 8,
our TGeo-KD can outperform all the relevant KD-based baseline methods.

A.4 MORE ABLATION STUDIES

Student and teacher architectures. In the main paper, we have shown the superiority of TGeo-KD
across different architectures and model sizes of teachers and students on CIFAR-100 and ImageNet.
Here, we provide more results on the other two datasets. As shown in Table 9, our proposed TGeo-KD
consistently demonstrates strong performance across a range of architectural discrepancies between
the teacher and student networks.

Table 9: Result comparison (with different gaps between students and teachers) on HIL and Criteo.
“S = i, T = j” indicates the number of layers of the student and teacher network, respectively, which
serve as a proxy for the size or the number of parameters or capacity of the network. Note that our
baselines are built with “S = 4, T = 12” in the main paper.

Dataset HIL Criteo

Gap (in size) ACC (%) ⇑ AUC (%) ⇑ NLL ⇓ ACC (%) ⇑ AUC (%) ⇑ NLL ⇓
S = 4, T = 4 89.33 69.48 1.02 74.37 74.09 0.97
S = 4, T = 8 91.72 70.78 0.96 75.51 75.21 0.84
S = 4, T = 12 92.39 71.65 0.94 77.80 77.00 0.81
S = 4, T = 16 88.65 70.17 1.01 74.20 74.96 1.01
S = 4, T = 20 87.92 69.58 1.03 73.28 73.27 1.08
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Table 10: Sensitivity to temperature τ . Top-1 classification accuracy (%) is reported.
Dataset τ=0.5 τ=1.0 τ=1.5 τ=2.0 τ=2.5 τ=3.0 τ=3.5 τ=4.0 τ=4.5 τ=5.0

CIFAR-100 69.80 71.51 71.65 72.30 72.07 72.15 72.09 72.98 72.53 71.22

ImageNet 71.05 71.76 72.89 72.28 72.53 71.74 72.01 71.63 71.82 71.44

HIL 91.04 92.12 92.39 91.70 91.87 91.65 92.05 91.31 91.52 91.10

Criteo 76.72 76.58 77.29 77.80 77.16 77.00 76.89 77.08 76.35 75.97

Sensitivity to temperature τ . Table 10 compares the top-1 classification accuracy (%) of TGeo-KD
using various temperatures (i.e., in the range of [0.5, 5.0]). It can be observed that our proposed
TGeo-KD maintains stable performance using different temperatures τ (i.e., with the variances of
0.69, 0.26, 0.42, and 0.49), which further demonstrates the consistent performance of TGeo-KD
across various temperature settings.

Sensitivity to oversampling. We employ oversampling when the dataset is imbalanced, which is a
widely accepted practice in the research community, especially for classification tasks. To analyze
the impact of oversampling on performance, we compare our TGeo-KD with five other baselines
across varying imbalance ratios on the HIL and Criteo datasets. As shown in Table 11, our proposed
TGeo-KD consistently outperforms all the baselines (e.g., the improved accuracy of 2.24% and 3.15%
over the best baseline ADA-KD (Lukasik et al., 2021) with ρ = 1 and without oversampling on HIL
dataset, respectively), which underscores the robustness of our TGeo-KD on imbalanced datasets.

Table 11: Top-1 classification accuracy (%) on HIL and Criteo with different imbalance ratios. The
imbalance ratio ρ is defined as the proportion between the sample sizes of the most prevalent class
and the least prevalent class, where ρ = 1 represents a balanced setting. We calculate the average
results (with standard deviation) over 5 repeated runs.

Dataset HIL Criteo

Method ρ = 1 ρ = 5 w/o ρ = 1 ρ = 5 w/o

Vanilla KD 87.55±0.56 81.72±0.66 72.07±0.71 71.08±0.48 67.32±0.56 61.01±0.39

ANL-KD 87.27±0.23 81.33±0.30 71.82±0.29 72.71±0.35 68.03±0.38 62.18±0.32

ADA-KD 90.15±0.34 83.49±0.22 75.23±0.28 72.15±0.33 67.74±0.42 61.35±0.46

WLS-KD 90.05±0.28 82.83±0.24 74.77±0.27 75.30±0.38 71.21±0.55 64.52±0.43

RW-KD 89.40±0.45 82.22±0.59 73.91±0.58 75.05±0.44 70.58±0.37 63.90±0.38

TGeo-KD 92.39±0.49 85.65±0.27 78.38±0.21 77.80±0.29 74.09±0.32 67.77±0.30

Representations of Trilateral Geometry. To fully exploit intra-sample and inter-sample relations,
we consider multiple representations of trilateral geometry as follows:

• R1: Si ⊕ Ti ⊕ T̄ci ⊕ Gi,

• R2: esgi ⊕ etgi ⊕ esti ⊕ et̄gi ⊕ est̄i ,

• R3: esgi ⊕ etgi ⊕ esti ⊕ et̄gi ⊕ est̄i ⊕ Si ⊕ Ti ⊕ T̄ci ⊕ Gi,

where the explanations of notations can be found in the main paper. We conduct this ablation
experiment on all the datasets. As shown in Table 12, our proposed TGeo-KD can achieve the best
performance by capturing both the vertex-wise and edge-wise trilateral geometric information (i.e.,
R3) at the intra-sample and inter-sample levels.

Effect of prediction discrepancy and inter-samples relations on outliers. To analyze the impacts
of prediction discrepancy (ST ) and inter-sample relations (∆ST̄ G) on outliers, we compare the Top-1
classification accuracy on outliers of CIFAR-100 when learning α based on different relations. As
shown in Table 13, our proposed TGeo-KD achieves the best performance on outliers when consid-
ering both the discrepancy and inter-sample relations. Furthermore, compared to solely exploiting
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Table 12: Top-1 classification accuracy (%) and AUC (%) comparison among different representations
of trilateral geometry.

Dataset CIFAR-100 ImageNet HIL Criteo

Representation ACC AUC ACC AUC ACC AUC ACC AUC

R1 70.32 66.24 69.87 64.52 87.52 69.82 73.87 73.39
R2 68.44 64.10 71.28 65.91 87.14 70.26 74.21 74.01
R3 72.98 68.57 72.89 67.14 92.39 71.65 77.80 77.00

Table 13: Comparison of Top-1 classification accuracy (%) on outliers among different relations. The
teacher and student are ResNet-32×4 and ShuffleNetV1.

SG+T G ST ∆ST̄ G ACC

TGeo-KD " - - 28.46
TGeo-KD " " - 32.15
TGeo-KD " - " 40.71
TGeo-KD " " " 45.89

the discrepancy, inter-sample relations make a better contribution to the improved performance on
outliers.

Moreover, to analyze the impact of ST and ∆ST̄ G on the fusion ratios for incorrectly predicted
samples, Table 14 reports the mean and standard deviation of the fusion ratios across these samples
when learning fusion ratio with and without the consideration of ST and ∆ST̄ G . When considering
both ST and ∆ST̄ G , our TGeo-KD demonstrates the fusion ratios below 0.3 for incorrectly predicted
samples. This suggests that the student acquires more knowledge from the ground truth, leading
to decreased fusion ratios on LKD. Furthermore, in comparison to solely exploiting ∆ST̄ G when
learning fusion ratios, ST contributes more effectively to the decreased fusion ratios across incorrectly
predicted samples.

Table 14: Final fusion ratios on incorrectly predicted samples with and without the consideration of
prediction discrepancy (ST ) and inter-sample relations (∆ST̄ G).

SG+T G ST ∆ST̄ G Final fusion ratio

TGeo-KD " - - 0.58±0.29
TGeo-KD " " - 0.32±0.15
TGeo-KD " - " 0.43±0.18
TGeo-KD " " " 0.12±0.07

Computational cost. We compare the computational cost of our proposed TGeo-KD with the
baselines including vanilla KD (Hinton et al., 2015), ANL-KD (Clark et al., 2019), ADA-KD (Lukasik
et al., 2021), and WLS-KD (Zhou et al., 2021). We run experiments on CIFAR-100, and report
the mean training time (in seconds) on a batch of 128 images per iteration. The student network is
ResNet-32. The experiment is conducted on one NVIDIA RTX-3090 GPU. As shown in Table 15,
our method achieves better training efficiency.

A.5 DISCUSSION

Limitation. Although our proposed TGeo-KD is a promising knowledge distillation approach, it
could be limited by solely considering inter-sample relations within the same class, thereby neglecting
relationships across different classes that could potentially enhance performance. This can be regarded
as one future research direction of this work.

Broader impact. As for the broader impact, with its capability of dynamically learning a sample-
wise knowledge fusion ratio across various model architectures, TGeo-KD holds the potential to
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Table 15: Mean training time (in seconds) on a batch for CIFAR-100 per iteration.
Vanilla KD ANL-KD ADA-KD WLS-KD TGeo-KD (Ours)

0.095 0.095 0.101 0.097 0.097

significantly improve the performance of knowledge distillation across a variety of domains, including
image classification, attack detection, and click-through rate prediction.
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