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Abstract

Many commercial Large Language Models (LLMs) are often closed-source, lim-
iting developers to prompt tuning for aligning content generation with specific
applications. While these models currently do not provide access to token log-
its, we argue that if such access were available, it would enable more powerful
adaptation techniques beyond prompt engineering. In this paper, we propose a
token-level probability reweighting framework that, given access to logits and a
small amount of task-specific data, can effectively steer black-box LLMs toward
application-specific content generation. Our approach views next-token prediction
through the lens of supervised classification. We show that aligning black-box
LLMs with task-specific data can be formulated as a label noise correction problem,
leading to Plugin model – an autoregressive probability reweighting model that
operates solely on logits. We provide theoretical justification for why reweighting
logits alone is sufficient for task adaptation. Extensive experiments with multiple
datasets, LLMs, and reweighting models demonstrate the effectiveness of our
method, advocating for broader access to token logits in closed-source models. Our
code can be found at this link.

1 Introduction

The rise of Large Language Models (LLMs) has revolutionized generative AI, yet the most capable
models are often closed-source or black-box [Achiam et al., 2023, Bai et al., 2022a]. These models
generate text based on input prompts but keep their internal weights and training data undisclosed,
limiting transparency and customization. Despite these constraints, closed-source LLMs are widely
adopted across applications ranging from travel itinerary generation to tax advice, with developers
largely relying on prompt optimization to achieve domain-specific outputs.

However, this reliance on prompt engineering is insufficient for specialized tasks, e.g., those requiring
brand-specific tone or style. Consider a content writer aiming to generate product descriptions
that reflect a brand’s unique identity. Black-box LLMs, trained on broad datasets, often fail to
meet such nuanced requirements. With access limited to generated tokens, developers resort to
zero-shot [Kojima et al., 2022] or few-shot [Song et al., 2023] prompting techniques. However, if
model weights were accessible, advanced techniques like Parameter-Efficient Fine-Tuning (PEFT)
using LoRA [Hu et al., 2021], QLoRA [Dettmers et al., 2024], prefix tuning [Li and Liang, 2021],
or adapters [Hu et al., 2023a] could be employed for fine-tuning. Yet, due to intellectual property
concerns and the high costs of development, most commercial LLMs remain closed-source, and even
with API-based fine-tuning options, concerns over data privacy discourage developers from sharing
proprietary data.
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Figure 1: Inference phase of the Plugin model. The token probabilities are a product of the probabili-
ties from the black-box model and a reweighting model that denotes label transitioning.

In this paper, we propose a middle ground between general-purpose LLM creators and developers
seeking application-specific alignment. We argue that providing access to token logits, in addition
to generated text, would enable more effective customization for downstream tasks. Viewing next-
token prediction as a classification problem, we draw an analogy between LLMs and supervised
classification models. Since decoder-only LLMs are trained to predict the next token given preceding
tokens, aligning black-box LLMs to domain-specific data can be reframed as a label noise correction
problem in supervised classification. In this analogy, the LLM’s broad training data serves as proxy
labels, while application-specific data represents true labels. This can be interpreted as a distribution
shift scenario. For example, in “label shift” [Lipton et al., 2018], certain tokens may appear more
frequently in application-specific data than in the LLM’s original corpus. In “class-dependent or
independent label noise” [Patrini et al., 2017], synonymous expressions or stylistic variations in
application data may diverge from those seen during model training.

Inspired by label noise correction methods [Patrini et al., 2017], which estimate a transition matrix to
adjust for class-dependent noise, we adapt this approach to black-box LLM alignment. Unlike prior
methods that modify loss functions during training, we lack access to the LLM’s original training
data and cannot retrain the model. Instead, we estimate an autoregressive transition matrix from
application-specific data to reweight token probabilities at inference.

This autoregressive extension is novel, as it accounts for dependencies on previously generated
tokens when adjusting logits for the next token. By adapting label noise correction techniques to
autoregressive language modeling, we present a practical method to align black-box LLMs using
only logits—without requiring access to model weights or original training data.

Our contributions are summarized as follows:

1. We formulate the problem of adapting black-box LLMs for application-specific content
generation as a loss correction approach, requiring only token logits at each generation step.
This bridges label noise correction in supervised classification with autoregressive language
modeling (Sections 2 and 3).

2. We propose an autoregressive probability reweighting framework, enabling token-level
probability adjustment during inference. The resulting Plugin model dynamically reweights
logits to align generation with task-specific data (Section 4).

3. We provide theoretical guarantees, showing that under mild assumptions, the Plugin
model consistently aligns probability estimates with the target distribution given suffi-
cient application-specific samples. To our knowledge, this is the first work to establish such
consistency in an autoregressive label noise setting (Section 5).

4. We conduct extensive experiments across four language generation datasets and three black-
box LLMs. Our results, supported by multiple ablations, demonstrate that the Plugin model
outperforms baselines in adapting black-box LLMs for domain-specific content generation
(Section 7). Based on our results, we advocate for publishing token logits alongside outputs
in closed-source LLMs.
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2 Preliminaries

We begin by establishing the notation. The index set is denoted as [c] = {1, . . . , c} for any positive
integer c. Vectors are represented in boldface, for example, v, while matrices are denoted using
uppercase letters, such as V . The coordinates of a vector are indicated with subscripts, for instance,
vj . The all-ones vector is denoted by 1, with its size being clear from the context. The c-dimensional
simplex is represented as ∆c−1 ⊂ [0, 1]c. Finally, a sequence (xt, xt−1, . . . , x1) of size t is denoted
by xt:1.

We assume access to language data for the target task, while the black-box LLM, trained on broad
world knowledge, is treated as having learned from a noisy version of this data. Our objective is to
adapt the black-box model to align with the task-specific distribution. To formalize this, we extend
the label-noise framework from supervised classification [Patrini et al., 2017] to the decoder-only
language modeling setting.

Decoder-only models are trained using a next-token prediction objective. At each step, this setup
resembles a supervised classification problem with |V | classes, where V is the vocabulary of tokens.
Formally, the label space at step t is Xt = {ei : i ∈ [|V |]}, where ei denotes the i-th standard
canonical vector in R|V |, i.e., ei ∈ {0, 1}|V |,1Tei = 1. The task at each step t is to predict the next
token xt (denoted as one-hot vector) given a sequence of tokens xt−1:1.

One observes examples (xt,xt−1:1) drawn from an unknown distribution p∗(xt,xt−1:1) =
p∗(xt|xt−1:1)p

∗(xt−1:1) over V × V [t−1], with expectations denoted by E∗
xt,xt−1:1

. The stan-
dard cross-entropy loss is typically used for training over the vocabulary tokens. Assuming access
to token logits, and thus the softmax outputs, from the black-box LLM, we interpret the soft-
max output as a vector approximating the class-conditional probabilities p∗(xt|xt−1:1), denoted as
b(xt|xt−1:1) ∈ ∆|V |−1.

To quantify the discrepancy between the target label xt = ei at step t and the model’s predicted
output, we define a loss function ℓ : |V | ×∆|V |−1 → R. A common choice in next-token prediction
tasks is the cross-entropy loss:

ℓ(ei, b(xt|xt−1:1)) = −(ei)T log b(xt|xt−1:1)

= − log b(xt = ei|xt−1:1). (1)

With some abuse of notation, the loss in vector form ℓ : ∆|V |−1 → R|V |, computed on every possible

label is ℓ(b(xt|xt−1:1) =
(
ℓ(e1, b(xt|xt−1:1)), . . . , ℓ(e

|V |, b(xt|xt−1:1))
)T

.

3 Loss Robustness

We extend label noise modeling to the autoregressive language setting, focusing on asymmetric
or class-conditional noise. At each step t, the label xt in the black-box model’s training data is
flipped to x̃t ∈ V with probability p∗(x̃t|xt), while preceding tokens (xt−1:1) remain unchanged.
As a result, the black-box model observes samples from a noisy distribution: p∗(x̃t,xt−1:1) =∑

xt
p∗(x̃t|xt)p

∗(xt|xt−1:1)p
∗(xt−1:1).

We define the noise transition matrix Tt ∈ [0, 1]|V |×|V | at step t, where each entry Ttij = p∗(x̃t =

ej |xt = ei) represents the probability of label flipping. This matrix is row-stochastic but not
necessarily symmetric.

To handle asymmetric label noise, we modify the loss ℓ for robustness. Initially, assuming a known
Tt, we apply a loss correction inspired by [Patrini et al., 2017, Sukhbaatar et al., 2015]. We then relax
this assumption by estimating Tt directly, forming the basis of our Plugin model approach.

We observe that a language model trained with no loss correction would result in a predictor for noisy
labels b(x̃t|xt−1:1). We can make explicit the dependence on Tt. For example, with cross-entropy
we have:
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ℓ(ei, b(x̃t|xt−1:1)) = − log b(x̃t = ei|xt−1:1)

= − log

|V |∑
j=1

p∗(x̃t = ei|xt = ej)b(xt = ej |xt−1:1)

= − log

|V |∑
j=1

Ttjib(xt = ej |xt−1:1), (2)

or in matrix form
ℓ(b(x̃t|xt−1:1)) = − log T⊤

t b(xt|xt−1:1). (3)

This loss compares the noisy label x̃t to the noisy predictions averaged via the transition matrix Tt at
step t. Cross-entropy loss, commonly used for next-token prediction, is a proper composite loss with
the softmax function as its inverse link function [Patrini et al., 2017]. Consequently, from Theorem 2
of Patrini et al. [2017], the minimizer of the forwardly-corrected loss in Equation (3) on noisy data
aligns with the minimizer of the true loss on clean data, i.e.,

argmin
w

E∗
x̃t,xt−1:1

[
ℓ(xt, T

⊤
t b(xt|xt−1:1))

]
= argmin

w
E∗

xt,xt−1:1

[
ℓ(xt, b(xt|xt−1:1))

]
,

where w are the language model’s weights, implicitly embedded in the softmax output b from the
black-box model. This result suggests that if Tt were known, we could transform the softmax output
b(xt | xt−1:1) using TT

t , use the transformed predictions as final outputs, and retrain the model
accordingly. However, since Tt is unknown and training data is inaccessible, estimating Tt from
clean data is essential to our approach.

3.1 Estimation of Transition Matrix

We assume access to a small amount of target language data for the task. Given that the black-box
model is expressive enough to approximate p∗(x̃t | xt−1:1) (Assumption (2) in Theorem 3 of Patrini
et al. [2017]), the transition matrix Tt can be estimated from this target data. Considering the
supervised classification setting at step t, let X i

t represent all target data samples where xt = ei

and the preceding tokens are (xt−1:1). A naive estimate of the transition matrix is: T̂tij = b(x̃t =

ej |xt = ei) = 1
|X i

t |
∑

x∈X i
t
b(x̃t = ej |xt−1:1).

While this setup works for a single step t, there are two key challenges in extending it across all steps
in the token prediction task:

1. Limited sample availability: The number of samples where xt = ei and the preceding tokens
(xt−1, . . . ,x1) match exactly is limited in the clean data, especially with large vocabulary sizes
(e.g., |V | = O(100K) for LLaMA [Dubey et al., 2024]). This necessitates modeling the transition
matrix as a function of features derived from xt−1:1, akin to text-based autoregressive models.

2. Large parameter space: With a vocabulary size of |V | = O(100K), the transition matrix Tt

at step t contains approximately 10 billion parameters. This scale may exceed the size of the
closed-source LLM and cannot be effectively learned from limited target data. Therefore, structural
restrictions must be imposed on Tt to reduce its complexity.

To address these challenges, we impose the restriction that the transition matrix Tt is diagonal.
While various constraints could be applied to simplify the problem, assuming Tt is diagonal offers
two key advantages. First, it allows the transition matrix—effectively a vector in this case—to be
modeled using standard autoregressive language models, such as a GPT-2 model with k transformer
blocks, a LLaMA model with d-dimensional embeddings, or a fine-tuned GPT-2-small model. These
architectures can be adjusted based on the size of the target data. Second, a diagonal transition matrix
corresponds to a symmetric or class-independent label noise setup, where xt = ei flips to any other
class with equal probability in the training data. This assumption, while simplifying, remains realistic
within the framework of label noise models.
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By enforcing this diagonal structure, we ensure efficient estimation of the transition matrix while
maintaining practical applicability within our framework. In the next section, we outline our approach
for adapting closed-source language models to target data.

4 Proposed Method: The Plugin Approach

To estimate the autoregressive transition vector, we train an autoregressive language model on
target data, which operates alongside the black-box model during inference. This model acts as an
autoregressive reweighting mechanism, adjusting the token probabilities produced by the black-box
model. The combined approach, integrating probabilities from the black-box and reweighting models,
is referred to as the Plugin model. The term Plugin is inspired by classification literature, where
plugin methods reweight probabilities to adapt to distribution shifts [Koyejo et al., 2014, Narasimhan
et al., 2014, 2015, Hiranandani et al., 2021]. We now detail the training and inference phases,
summarized in Algorithm 1 (Appendix A) and illustrated in Figure 1.

4.1 Training the Plugin Model

During each training iteration, a sequence s of m tokens is passed through both the black-box model
and the reweighting model to obtain token probabilities {b1, b2, . . . , bm} and {r1, r2, . . . , rm},
respectively, where each bi, ri ∈ ∆|V |−1. The final token probability from the Plugin model is
computed by normalizing the element-wise product of these probabilities:

pi =
bi ⊙ ri

∥bi ⊙ ri∥1
. (4)

The sequence-level cross-entropy loss is given by:

ℓs = − 1

m

m∑
i=1

|V |∑
j=1

log(pi)⊙ ej , (5)

where the j-th token appears at the i-th position in the sequence s. During backpropagation, only
the reweighting model parameters are updated, while the black-box model remains frozen. This
formulation extends naturally to batch training, refining ri over iterations to approximate the transition
vector governing label shifts in the target data.

4.2 Inference from the Plugin Model

Given a fully trained reweighting model and access to the black-box model, token generation proceeds
autoregressively. At the first step, the black-box model produces token probabilities b1, while the
reweighting model outputs r1. The Plugin model selects the first token as x1 = argmaxV (b1 ⊙ r1).
For subsequent steps, given the previously generated tokens xt−1:1, we obtain probabilities bt from
the black-box model and rt from the reweighting model. The Plugin model then predicts the next
token as: xt = argmaxV (bt ⊙ rt).

The process continues until a stopping criterion is met. Note that, this manuscript focuses on greedy
decoding for inference. Other decoding strategies, such as temperature scaling, top-p sampling, or
beam search, can be incorporated by normalizing the element-wise product of probabilities and using
them as the final token distribution, as in (4).

5 Theoretical Analysis

We establish the convergence properties of the Plugin model, demonstrating that after training for t
tokens, it accurately estimates the autoregressive noise transition matrix. We model the transition
matrix as a function of an unknown parameter θ∗ and show that, after optimizing the autoregressive
loss over a sequence of tokens, the Plugin model estimates θ∗ with high probability.

Let F t−1 denote the history of selected tokens up to time t − 1. Let an unknown parameter
θ∗ ∈ Θ ⊆ Rd governs the transition dynamics of label flipping between token pairs. The transition
matrix at time t, denoted as Tt(θ∗|F t−1), depends on θ∗ and all previously observed tokens. Before
proving our main result, we first make a few assumptions.
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Assumption 5.1. Let Tt(θ∗;xi, xj ,F t−1) denote the (i, j)-th component of the transition matrix, and
let fIt(θ∗;xi, xj ,F t−1) be the transition function that determines the transition from xi to xj , where
It is the xi token selected at time t. Let xi, xj ∈Rd. We assume that ∇fIt(θ∗;xi, xj ,F t−1)<λ0

and ∇2fIt(θ∗;xi, xj ,F t−1)<λ1 for some constant λ0>0, λ1 > 0 and for all steps t.

Assumption 5.1 ensures that the transition matrix depends on the generalized history-dependent
function fIt(·) which has a bounded gradient and hessian. Similar assumptions for other deep models
have been made in [Singh et al., 2023, Zhang et al., 2024].
Assumption 5.2. We assume the cross-entropy loss (5) is clipped by ϵ > 0 and upper bounded as
ℓclippedt ≤C|V |2(Yt − fIt(θ∗;xi, xj ,F t−1))2 for any time t, where Yt is the predicted token class,
fIt determines the true class and satisfies Assumption 5.1, and C>0 is a constant.

Assumption 5.2 ensures that the clipped log loss is upper bounded by a smoother squared loss. For the
remaining of this section we refer to this squared loss at time t as ℓt(θ). Let the Plugin model minimize
the loss ℓ1(θ), ℓ2(θ), · · · , ℓt(θ) over t iterations. Let θ̂t = argminθ∈Θ

∑t
s=1 ℓs(θ). At every

iteration t, the Plugin algorithm looks into the history F t−1 and samples a token xt ∼ pθ̂t
= bt⊙rθ̂t .

Let L̂t(θ) = 1
t

∑t
s=1 ℓs(θ) and its expectation Lt(θ) = 1

t

∑t
s=1 Exs∼p

θ̂s−1
[ℓs(θ)|Fs−1]. We

impose regularity and smoothness assumptions on the loss function ℓt(θ) as stated in Assumption B.1
(Appendix B). We are now ready to prove the main theoretical result of the paper.

Theorem 1. Suppose ℓ1(θ), · · · , ℓt(θ) : R|V | → R are loss functions from a distribution
that satisfies Assumptions 5.1, 5.2, and B.1. Define Lt(θ) = 1

t

∑t
s=1 Exs∼p

θ̂s−1
[ℓs(θ)|Fs−1]

where, θ̂t = argminθ∈Θ

∑t
s=1 ℓs(θ). If t is large enough such that γ log(dt)

t ≤

c′ min

{
1

C1C2|V |4 ,
max
θ∈Θ

(Lt(θ)−Lt(θ∗))
C2

}
then for a constant γ ≥ 2, universal constants C1, C2, c

′,

we have that

(1− ρt)
σ2
t

t
− C2

1

tγ/2
≤ E

[
Lt(θ̂t)− Lt (θ∗)

]
≤ (1 + ρt)

σ2
t

t
+
max
θ∈Θ

(
Lt(θ)−Lt (θ∗)

)
tγ

,

where σ2
t := E

[
1
2

∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1

]
, and ρt :=

(
C1C2 + 2η2λ2

1

)√γ log(dt)
t .

Theorem 1 bounds the difference between the estimated and true average loss functions, showing that
this gap diminishes as the number of training tokens increases. Since θ̂t = argminθ∈Θ

∑t
s=1 ℓs(θ),

the Plugin model progressively refines its estimation of the unknown parameter θ∗. As the transition
matrix Tt(θ∗;xi, xj ,F t−1) is derived from fIt(θ∗;xi, xj ,F t−1), which depends on θ∗, training on
sufficiently many tokens ensures an accurate estimation of each component of Tt(θ∗|F t−1).

Our proof reformulates the problem as a sequential hypothesis testing setting to estimate the average
loss function Lt(θ̂t) using the sequence of losses ℓ1(θ), . . . , ℓt(θ) [Naghshvar and Javidi, 2013, Lat-
timore and Szepesvári, 2020]. Unlike prior work [Frostig et al., 2015, Chaudhuri et al., 2015], which
assumes i.i.d. losses, the loss at time t in our setting depends on all previous losses. Additionally,
Mukherjee et al. [2022] study a different active regression setting without considering cross-entropy
loss or transition noise matrices as in [Patrini et al., 2017]. We provide a brief overview of the proof
technique in Remark B.9 (Appendix B), highlighting key novelties.

6 Related Work

Parameter-Efficient Fine-Tuning (PEFT). PEFT methods adapt LLMs to downstream tasks while
minimizing computational overhead. LoRA [Hu et al., 2021] and QLoRA [Dettmers et al., 2024]
introduce low-rank updates and quantization for efficient fine-tuning, while prefix tuning [Li and
Liang, 2021], adapters [Hu et al., 2023b], and soft prompting [Lester et al., 2021] modify task-specific
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Table 1: Performance comparison on E2E NLG dataset. We show mean and standard deviation of the
metrics over five seeds.

Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST
GPT2-XL Zeroshot 0.0562 0.4013 0.1636 0.2862 0.3697 0.0187 0.5338
GPT2-XL ICL-1 0.0686±0.032 0.4016±0.042 0.1404±0.052 0.2745±0.025 0.3503±0.019 0.0353±0.015 0.7944±0.067

GPT2-XL ICL-3 0.0980±0.035 0.4188±0.040 0.1923±0.046 0.2912±0.031 0.3925±0.027 0.0250±0.017 0.9390±0.054

GPT2-XL NewModel 0.2377±0.011 0.5049±0.014 0.2742±0.013 0.3902±0.006 0.4521±0.016 0.3938±0.019 1.1927±0.069

GPT2-XL WeightedComb 0.1184±0.010 0.4237±0.016 0.1858±0.012 0.3004±0.010 0.3776±0.016 0.1818±0.023 1.0261±0.057

GPT2-XL Plugin (Ours) 0.2470±0.009 0.5536±0.007 0.3084±0.007 0.4213±0.008 0.5057±0.009 0.5455±0.013 1.2736±0.051

LLaMA-3.1-8B Zeroshot 0.3226 0.6917 0.4050 0.5004 0.6041 0.9764 1.1310
LLaMA-3.1-8B ICL-1 0.3301±0.037 0.6914±0.027 0.4126±0.026 0.5023±0.018 0.6037±0.015 0.9715±0.057 1.1735±0.066

LLaMA-3.1-8B ICL-3 0.3527±0.033 0.6936±0.036 0.4217±0.017 0.5127±0.017 0.6202±0.009 0.9927±0.018 1.1672±0.047

LLaMA-3.1-8B NewModel 0.2452±0.008 0.5347±0.005 0.2905±0.006 0.4097±0.005 0.4812±0.009 0.4571±0.021 1.2281±0.041

LLaMA-3.1-8B WeightedComb 0.3517±0.004 0.7040±0.004 0.4249±0.004 0.5181±0.003 0.6206±0.002 1.0947±0.010 1.1737±0.015

LLaMA-3.1-8B Plugin (Ours) 0.3691±0.013 0.7113±0.002 0.4374±0.004 0.5247±0.002 0.6392±0.009 1.1441±0.030 1.1749±0.034

Table 2: Performance comparison on Web NLG dataset. We show mean and standard deviation of the
metrics over five seeds.

Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST
GPT2-XL Zeroshot 0.0317 0.2992 0.1321 0.2417 0.1969 0.0491 0.1826
GPT2-XL ICL-1 0.0510±0.024 0.3223±0.026 0.1526±0.016 0.2562±0.031 0.2591±0.009 0.1336±0.029 0.2235±0.033

GPT2-XL ICL-3 0.0744±0.016 0.3383±0.036 0.1682±0.016 0.2651±0.028 0.3071±0.014 0.1675±0.024 0.2550±0.021

GPT2-XL NewModel 0.1071±0.005 0.3260±0.010 0.1496±0.014 0.2724±0.013 0.2642±0.008 0.4327±0.023 0.2916±0.031

GPT2-XL WeightedComb 0.0636±0.006 0.3453±0.007 0.1666±0.003 0.2782±0.005 0.2871±0.006 0.2460±0.005 0.2981±0.018

GPT2-XL Plugin (Ours) 0.1673±0.004 0.4616±0.007 0.2527±0.007 0.3757±0.008 0.3895±0.007 0.8987±0.013 0.2646±0.003

LLaMA-3.1-8B Zeroshot 0.1453 0.5278 0.3030 0.3982 0.4314 0.6991 0.2684
LLaMA-3.1-8B ICL-1 0.2166±0.031 0.5944±0.027 0.3706±0.025 0.4667±0.013 0.5651±0.045 1.5719±0.024 0.2462±0.038

LLaMA-3.1-8B ICL-3 0.2031±0.027 0.5937±0.019 0.3821±0.015 0.4653±0.024 0.5682±0.046 1.3826±0.051 0.2469±0.045

LLaMA-3.1-8B NewModel 0.1284±0.005 0.3506±0.009 0.1673±0.007 0.2879±0.009 0.2921±0.008 0.4999±0.030 0.2973±0.008

LLaMA-3.1-8B WeightedComb 0.1922±0.012 0.5986±0.019 0.3612±0.012 0.4659±0.008 0.4470±0.030 1.1855±0.075 0.2575±0.020

LLaMA-3.1-8B Plugin (Ours) 0.2542±0.004 0.6375±0.005 0.3873±0.005 0.4869±0.007 0.5724±0.004 1.5911±0.046 0.2590±0.003

representations through trainable layers or embeddings. However, these methods require access to
model weights, gradients, or architecture details, making them unsuitable for closed-source LLMs
and inapplicable as baselines in our setup. In contrast, our approach operates solely on token logits,
enabling adaptation without modifying the underlying model.

Steering and Aligning LLMs. LLM alignment methods primarily use reinforcement learning or
instruction tuning. RLHF and DPO [Christiano et al., 2017, Ouyang et al., 2022, Rafailov et al.,
2024] optimize model behavior via human preferences, with DPO eliminating reward modeling.
Constitutional AI [Bai et al., 2022b] aligns models using self-generated principles, while instruction
tuning [Wei et al., 2021, Sanh et al., 2022] adapts them via task-specific demonstrations. Unlike
our approach, these methods require model weights and training data, limiting their applicability as
baselines in our setup.

Calibration of LLMs. LLM calibration methods aim to align model confidence with predictive
accuracy and adjust confidence scores but do not alter token predictions [Ulmer et al., 2024, Shen
et al., Huang et al., 2024, Kapoor et al., 2024, Zhu et al., 2023]. In contrast, our method reweights
token probabilities at inference, enabling adaptation of black-box LLMs without modifying the model
or requiring fine-tuning.

Black-box LLMs. Prior work explores various approaches for adapting black-box LLMs with-
out fine-tuning, though they differ fundamentally from our method. [Gao et al., 2024] infer user
preferences through interactive edits but do not adapt models based on past language data. Diffusion-
LM [Li et al., 2022] formulates text generation as a non-autoregressive denoising process, whereas our
approach reweights token probabilities autoregressively without requiring black-box model weights.
Discriminator-based methods [Dathathri et al., Mireshghallah et al., 2022, Yang and Klein, 2021,
Krause et al., 2021] control generation based on predefined attributes, contrasting with our method,
which enables free-form text adaptation. DExperts [Liu et al., 2021] combines expert and anti-expert
probabilities; we incorporate a similar probability combining strategy in a modified baseline without
a de-expert component. In-context learning [Long et al., 2023, Dong et al., 2024] offers a common
adaptation technique for black-box models and serves as a baseline in our setup.
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Table 3: Performance comparison on CommonGen dataset. We show mean and standard deviation of
the metrics over five seeds.

Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST
GPT2-XL Zeroshot 0.0317 0.2992 0.1321 0.2417 0.1969 0.0491 0.1826
GPT2-XL ICL-1 0.0508±0.023 0.3201±0.035 0.1526±0.097 0.2562±0.103 0.2591±0.089 0.1336±0.092 0.2235±0.069

GPT2-XL ICL-3 0.0744±0.011 0.3383±0.014 0.1682±0.030 0.2651±0.072 0.3071±0.073 0.1675±0.066 0.2550±0.047

GPT2-XL NewModel 0.1260±0.007 0.4106±0.016 0.1683±0.013 0.3740±0.009 0.3600±0.024 0.4570±0.058 0.7113±0.025

GPT2-XL WeightedComb 0.0614±0.020 0.3364±0.024 0.1347±0.009 0.2969±0.019 0.2921±0.018 0.2763±0.010 0.3352±0.051

GPT2-XL Plugin (Ours) 0.1791±0.014 0.4932±0.007 0.2288±0.004 0.4347±0.007 0.4702±0.006 0.7283±0.012 0.6554±0.038

LLaMA-3.1-8B Zeroshot 0.0643 0.2776 0.1181 0.2488 0.3857 0.3155 0.3347
LLaMA-3.1-8B ICL-1 0.0615±0.027 0.2697±0.033 0.1158±0.062 0.2469±0.087 0.3822±0.069 0.3005±0.072 0.3059±0.094

LLaMA-3.1-8B ICL-3 0.0635±0.016 0.2748±0.024 0.1225±0.018 0.3120±0.047 0.4012±0.029 0.3250±0.022 0.3794±0.034

LLaMA-3.1-8B NewModel 0.0753±0.004 0.3716±0.005 0.1122±0.003 0.3404±0.004 0.2665±0.006 0.1919±0.015 0.6900±0.046

LLaMA-3.1-8B WeightedComb 0.1789±0.005 0.3485±0.012 0.1797±0.008 0.2981±0.012 0.3637±0.011 0.5503±0.046 0.5450±0.020

LLaMA-3.1-8B Plugin (Ours) 0.2665±0.010 0.5800±0.002 0.3139±0.005 0.5037±0.004 0.5829±0.003 1.0876±0.020 0.7031±0.007

Table 4: Performance comparison on Adidas dataset. We show mean and standard deviation of the
metrics over five seeds.

Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST
GPT2-XL Zeroshot 0.0075 0.2309 0.0278 0.1438 0.1487 0.0184 0.4956
GPT2-XL ICL-1 0.0109±0.039 0.2567±0.082 0.0265±0.054 0.1519±0.038 0.1649±0.052 0.0318±0.171 0.5133±0.162

GPT2-XL ICL-3 0.0295±0.037 0.2509±0.071 0.0395±0.043 0.1536±0.039 0.1658±0.041 0.0321±0.109 0.5176±0.116

GPT2-XL NewModel 0.0515±0.016 0.2690±0.014 0.0637±0.014 0.1697±0.008 0.1918±0.013 0.0550±0.086 0.6682±0.047

GPT2-XL WeightedComb 0.0567±0.016 0.2210±0.027 0.0714±0.015 0.1550±0.024 0.1674±0.017 0.0183±0.117 0.4105±0.109

GPT2-XL Plugin (Ours) 0.0600±0.017 0.2710±0.025 0.0722±0.018 0.1725±0.017 0.1995±0.018 0.1195±0.138 0.6375±0.120

LLaMA-3.1-8B Zeroshot 0.0120 0.2470 0.0318 0.1493 0.1526 0.0424 0.5285
LLaMA-3.1-8B ICL-1 0.0220±0.044 0.2472±0.072 0.0405±0.068 0.1434±0.057 0.1686±0.041 0.0555±0.133 0.5078±0.142

LLaMA-3.1-8B ICL-3 0.0177±0.041 0.2385±0.065 0.0364±0.071 0.1408±0.030 0.1712±0.029 0.0587±0.102 0.5775±0.145

LLaMA-3.1-8B NewModel 0.0506±0.011 0.2700±0.011 0.0634±0.006 0.1749±0.006 0.1995±0.009 0.0575±0.051 0.6570±0.072

LLaMA-3.1-8B WeightedComb 0.0357±0.017 0.2583±0.014 0.0661±0.015 0.1560±0.011 0.1706±0.016 0.0745±0.086 0.5927±0.077

LLaMA-3.1-8B Plugin (Ours) 0.0611±0.018 0.2714±0.029 0.0742±0.020 0.1759±0.019 0.1990±0.020 0.1293±0.152 0.6361±0.134

7 Experiments

We divide this section into three parts. Section 7.1 evaluates Plugin on four text generation datasets
across three black-box language models. Since the Plugin model is trained on top of black-box
models, we refer to black-box models interchangeably as base models. Section 7.2 presents ablation
studies analyzing the impact of black-box model quality, Plugin’s complexity, and architecture
choices. Section 7.3 shows qualitative analysis and case studies.

We evaluate Plugin on four text generation benchmarks: (a) E2E NLG [Dušek et al., 2020], (b)
Web NLG [Gardent et al., 2017], (c) CommonGen [Lin et al., 2020], and (d) the Adidas product
description dataset [adi, 2023]. For the first three datasets, we use the standard train-validation-test
splits from the Transformers library [Wolf, 2020]. To introduce distribution shifts, we filter Web
NLG’s training data to include only infrastructure descriptions, while validation and test sets retain
person descriptions. Similarly, CommonGen’s training set is restricted to samples containing man,
while validation and test sets remain unchanged. Details of this setup are in Section 7.3. The Adidas
dataset is split into validation and test sets. Dataset statistics are provided in Table 5, Appendix C.1.

7.1 Text Generation Performance Comparison

We evaluate Plugin on the text generation task using only the validation and test splits of all four
datasets, reserving the train split for ablation studies (Section 7.2). Plugin and baseline models are
trained on the small validation set, with performance measured on the test set. Additionally, we
allocate 40% of the validation data as hyper-validation for cross-validation of hyperparameters.

Performance is reported using seven standard natural language generation metrics: (a) BLEU [Pap-
ineni et al., 2002], (b) ROUGE-1 [Lin, 2004], (c) ROUGE-2 [Lin, 2004], (d) ROUGE-L [Lin and
Och, 2004], (e) METEOR [Banerjee and Lavie, 2005], (f) CIDEr [Vedantam et al., 2015], and (g)
NIST [Doddington, 2002]. All experiments are repeated over five random seeds, and we report the
mean and standard deviation for each metric.

We compare Plugin with the following baselines: (a) Zeroshot: The black-box model directly
performs text generation without additional adaptation. (b) ICL-1 [Long et al., 2023]: One randomly
selected validation sample is used as an in-context example. (c) ICL-3 [Long et al., 2023]: Three
randomly selected validation samples are used as in-context examples. (d) NewModel: A new
language model is trained using the validation data. (e) WeightedComb [Liu et al., 2021]: A new
model is trained alongside the black-box model, with token probabilities computed as αn+(1−α)b,

8



GPT2-M
(zeroshot)

GPT2-M
(1FT)

GPT2-M
(2FT)

GPT2-M
(5FT)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Va
lu

e

BLEU
Base
Plugin

GPT2-M
(zeroshot)

GPT2-M
(1FT)

GPT2-M
(2FT)

GPT2-M
(5FT)

0.00

0.10

0.20

0.30

0.40

0.50
Rouge-L

Base
Plugin

Figure 2: Plugin with increasingly fine-tuned GPT2-M models on the E2E NLG dataset. Results
demonstrate that as the quality of the base model improves, the performance of the Plugin improves.
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Figure 3: Performance of GPT2-M with varying reweighting model complexities on E2E NLG
(BLEU, ROUGE-L). A single-layer reweighting model yields significant gains, while additional
layers degrade performance due to overfitting. Initializing with GPT2-Small as the reweighting model
improves performance, demonstrating the benefits of leveraging small pretrained models.

where n represents the probabilities from the new model and α is cross-validated in {0.25, 0.50, 0.75}.
Since the black-box model weights are inaccessible, fine-tuning-based approaches are not applicable
in our setting.

All methods use the same prompts where applicable (Appendix C.2) and employ greedy decoding.
The base (black-box) models used are GPT2-M [Radford et al., 2019], GPT2-XL [Radford et al.,
2019], and LLaMA-3.1-8B [Dubey et al., 2024]. NewModel, WeightedComb, and the reweighting
model in Plugin share the same architecture. For GPT-based models, these use a Transformer encoder
with one hidden layer and default configurations. For LLaMA-based models, the architecture consists
of a Transformer encoder with one hidden layer, 256 hidden size, 1024 intermediate size, and one
attention head. Learning rate and weight decay are cross-validated over {1e− 5, 5e− 5, 1e− 4, 5e−
4, 1e−3, 5e−3} and {0.01, 0.1, 1, 10}, respectively. Models are trained using AdamW with warmup
followed by linear decay, and early stopping is applied if the hyper-validation loss does not decrease
for five consecutive epochs.

Due to space constraints, results for GPT2-M as the base model are presented in Appendix C.4.
As shown in Tables 1–4 and their counterparts in Appendix C.4 (the best is bold, the second best
is underlined), Plugin outperforms baselines across nearly all datasets, black-box models, and
evaluation metrics. NewModel occasionally achieves higher NIST scores due to increased repetition
of less-frequent input tokens, but this comes at the cost of coherence, as reflected by other metrics.
WeightedComb does not perform well, indicating one combination for all tokens is not a good
modeling choice. We note that the absolute numbers may not appear competitive with state-of-the-art
results, because (a) we restrict to greedy decoding (Section 4.2), and (b) Web NLG and CommonGen
use distribution-shifted subsets.
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Figure 4: Comparison of the adaptation ability between the base model and Plugin on Adidas dataset.
Plugin, enhanced with a reweighting model, generates text that better aligns with the “Adidas domain”.
The bottom row illustrates token probabilities for key Adidas-related words at different decoding
steps, showing how the reweighting model influences token selection.

We also conduct a human evaluation on 100 Adidas dataset samples, where three subjects compare
outputs from Plugin and ICL-3 using LLaMA-3.1 as the base model. Evaluators select the prediction
closest to the ground truth, with Plugin preferred in 81% of cases. Details are in Appendix C.7.

7.2 Ablation Study

We now show ablation studies that reflect various aspects of the Plugin model. We display the results
using GPT2-M as base model on the E2E NLG dataset. The observation is similar on other base
models and datasets (Appendix C.5).

Impact of Base Model Quality. We fine-tune GPT2-M for varying epochs, denoted as 1FT (one
epoch), 2FT (two epochs), and 5FT (five epochs), and train a Plugin model for each. Figure 2 shows
that as the base model’s task-specific quality improves, the Plugin’s performance improves.

Complexity of the Reweighting Model in Plugin. We train Plugin models with reweighting
architectures varying from 1 to 12 transformer layers while keeping other configurations unchanged.
Additionally, we train a variant where the reweighting model is initialized with GPT2-Small. As
shown in Figure 3, a single-layer reweighting model yields significant improvements over the base
GPT2-M model, while additional layers (e.g., 2, 4, 8, 12) offer diminishing returns and slight
performance decline due to overfitting on the small validation set of E2E NLG. This suggests
that more data is required for learning complex reweighting models. Notably, initializing with a
pretrained GPT2-Small substantially improves performance, underscoring the advantage of using
small pretrained models for reweighting due to their inherent autoregressive properties.

7.3 Qualitative Analysis and Case Study

Plugin adapting to distribution shift. We evaluate Plugin on distribution-shifted Web NLG
and CommonGen using LLaMA-3.1-8B as the base model. Web NLG training data contains
only Infrastructure concepts, while validation and test sets include Person concepts. Similarly,
CommonGen training data features man, whereas validation and test sets contain both man and
woman. The base model is fine-tuned on training data, and Plugin is trained on validation data using
the fine-tuned model as the base, ensuring that Plugin corrects biases learned from training.

Using GPT-4o [Hurst et al., 2024] as an evaluator, the fine-tuned Web NLG model generates only
17.99% Person-related sentences, while Plugin increases this to 71.34%. On CommonGen, the fine-
tuned model generates 10.37% Woman-related sentences, whereas Plugin improves this to 31.92%.
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These results highlight Plugin’s ability to adapt under distribution shift and mitigate biases in the
base model.

Case study: Plugin adapting to domain. We examine token probabilities during inference for
LLaMA-3.1-8B and Plugin to assess domain adaptation in the Adidas dataset. Removing stopwords,
we extract the top-50 most frequent words, defining the “Adidas domain”. Figure 4 illustrates
this adaptation: the first row shows product attributes and ground-truth references; the second row
compares outputs from the base model (left) and Plugin (right); the third row visualizes model
probabilities for “Adidas domain” words at three decoding steps.

As seen in Figure 4, Plugin dynamically reweights probabilities to align with domain-specific
language. At step 23, “keep” is significantly upweighted. At step 48, “comfortable” and “dry” gain
prominence over “fit,” which the base model favors. At step 51, “ambition” is preferred by Plugin,
aligning with the ground truth, while the base model favors “look” and “products”. This demonstrates
that Plugin effectively steers generation toward domain-specific terminology, whereas the base model,
trained on broad corpora, lacks inherent domain preference.

8 Conclusion

We propose Plugin, a token-level probability reweighting framework that adapts black-box LLMs
using only logits and small task-specific data. Framing next-token prediction as a label noise
correction problem, we demonstrate both theoretical guarantees and empirical effectiveness across
multiple datasets and models. Our findings highlight the potential of logit-based adaptation and
advocate for broader access to token logits in closed-source LLMs.

Impact Statement

The ability to adapt closed-source LLMs without modifying their weights has significant implications
for both research and industry. Our proposed method, which leverages token logits for task-specific
alignment, offers a practical solution for developers constrained by black-box APIs. This approach
enhances customization, allowing models to generate more domain-relevant and controlled content
while preserving the privacy and security of proprietary data. Furthermore, by advocating for broader
access to token logits, this work fosters greater transparency and flexibility in commercial LLMs.
The findings also highlight the importance of mitigating biases in black-box models, contributing to
more equitable and context-aware language generation across diverse applications.

While Plugin effectively adapts black-box LLMs, it has some limitations, too. Since it only reweights
token probabilities without modifying internal representations or embeddings, it may struggle with
tasks requiring deep structural adaptations, such as executing complex reasoning. Further research
on this aspect is needed. Additionally, although Plugin avoids full fine-tuning, training a separate
reweighting model introduces computational overhead compared to prompt tuning or in-context
learning, with efficiency depending on the complexity of the reweighting model and the availability
of task-specific data.
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A Algorithm Details

We provide summarized form of the training and inference algorithm for the Plugin model below.

Algorithm 1 Training and Inference for the Plugin Model
Input: Black-box model B, reweighting model R, clean training data D, vocabulary V
Output: Plugin model predictions x1:T for a given sequence

1: Training Phase:
2: for each sequence s ∈ D do
3: Compute token probabilities {b1, b2, . . . , bm} using B.
4: Compute token probabilities {r1, r2, . . . , rm} using R.
5: Combine probabilities: pi =

bi⊙ri

∥bi⊙ri∥1
for i ∈ [m].

6: Compute sequence loss ℓs = − 1
m

∑m
i=1

∑|V |
j=1 log(pi)⊙ ej .

7: Update parameters of R using back-propagation. Freeze B.
8: end for
9: Inference Phase:

10: Initialize sequence x1:T = {}.
11: for each token position t = 1 to T do
12: Compute token probabilities bt using B.
13: Compute token probabilities rt using R.
14: Combine probabilities: pt =

bt⊙rt

∥bt⊙rt∥1
.

15: Predict token: xt = argmaxV (pt).
16: Append xt to x1:T .
17: end for
18: Return: x1:T

B Proof of Main Convergence Theorem

We define the following assumption on the smoothness and regularity of the loss function.

Assumption B.1. We assume the following assumptions hold with probability 1:

1. (Convexity of ℓs): The loss function ℓs is convex for all time s ∈ [t].

2. (Smoothness of ℓs): The ℓs is smooth such that the first, second, and third derivatives exist
at all interior points in Θ.

3. (Regularity Conditions):

(a) Θ is compact and ℓs(θ) is bounded for all θ ∈ Θ and for all s ∈ [t].
(b) θ∗ is an interior point in Θ.
(c) ∇2ℓs(θ∗) is positive definite, for all s ∈ [t] .
(d) There exists a neighborhood B of θ∗ and a constant C1, such that ∇2ℓs(θ) is C1

-Lipschitz. Hence, we have that
∥∥∥∇2ℓs(θ)−∇2ℓs

(
θ′)∥∥∥

∗
≤ C1

∥∥θ − θ′
∥∥
∇2Ls(θ∗)

,

for θ,θ′ in this neighborhood.

4. (Concentration at θ∗): We further assume that
∥∥∇ℓs (θ∗)

∥∥
(∇2Ls(θ∗))

−1 ≤ C2 hold with

probability one.

Lemma B.2. (Proposition 2 of [Hsu et al., 2012]) Let u1, . . . ,un be a martingale difference vector
sequence (i.e., E

[
ui | u1, . . . ,ui−1

]
= 0 for all i = 1, . . . , n ) such that

n∑
i=1

E
[
∥ui∥2 | u1, . . . ,ui−1

]
≤ v and ∥ui∥ ≤ b
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for all i = 1, . . . , n, almost surely. For all t > 0

Pr


∥∥∥∥∥∥

n∑
i=1

ui

∥∥∥∥∥∥ >
√
v +

√
8vt+ (4/3)bt

 ≤ e−t

Lemma B.3. The probability that ∥∇L̂t(θ∗)∥(∇2L(θ∗))
−1 crosses the threshold

√
cγ log(dt)

t
> 0

is bounded by

P

(
∥∇L̂t(θ∗)∥(∇2Lt(θ∗))

−1 ≥ C2

√
cγ log(dt)

t

)
≤ 1

tcγ
.

Proof. Define us := ∇(Ys − fIs(θ∗;xi, xj ,Fs−1))2. Then we have u1,u2, . . . ,ut as random
vectors such that

E


∥∥∥∥∥∥

t∑
s=1

us

∥∥∥∥∥∥
2

(∇2Lt(θ∗))
−1

∣∣∣∣u1, . . . ,us−1

 = E

 t∑
s=1

us
⊤
(
∇2Lt (θ∗)

)−1

us | u1, . . . ,us−1

 ≤ tC2
2

Also we have that ∥us∥ ≤ C2. Finally we have that

E[∇θ=θ∗us] = −2

t∑
s=1

pθ̂s−1
(fIs(θ∗;xi, xj ,Fs−1)− fIs(θ∗;xi, xj ,Fs−1)∇θ=θ∗fIs(θ∗;xi, xj ,Fs−1) = 0.

Then following Lemma B.2 and by setting ϵ = cγ log(dt) we can show that

P

∥1
t

t∑
s=1

us∥2
(∇2Lt(θ∗))−1

− E

∥1
t

t∑
s=1

us∥2
(∇2Lt(θ∗))−1

 >
1

t

√
8tC2

2ϵ+
4C2

3ϵ


= P

∥1
t

t∑
s=1

us∥2
(∇2Lt(θ∗))−1

> C2
1 + C2

√
8ϵ

t
+

4C2

3ϵ


≤ P

∥
t∑

s=1

us∥2
(∇2Lt(θ∗))−1

> C2

√
8ϵ

t

 = P

∥
t∑

s=1

us∥2
(∇2Lt(θ∗))−1

> 4C2

√
cγ log(dt)

t


≤ exp(−cγ log(dt)) =

(
1

dt

)cγ

≤ 1

tcγ

The claim of the lemma follows.

Lemma B.4. Let the j-th row and k-th column entry in the Hessian matrix ∇2
θ=θ′(ℓs(θ)) be denoted

as [∇2
θ=θ′(ℓs(θ))]jk. Then we have that

[∇2
θ=θ′(ℓs(θ))]jk = 2

∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk
+ 2

(
fIs(θ;xi, xj ,Fs−1)− Ys

) ∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk
.

Proof. This lemma follows from Frostig et al. [2015], Mukherjee et al. [2020] adapted to our setting
for the squared loss, and transition function fIs(θ∗;xi, xj ,Fs−1). We want to evaluate the Hessian
∇2

θ=θ′(ℓs(θ)) at any θ′ ∈ Θ. We denote the j-th row and k-th column entry in the Hessian matrix
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as [∇2
θ=θ′(ℓs(θ))]jk. Then we can show that

[∇2
θ=θ′(ℓs(θ))]jk :=

∂

∂θj

[
∂(fIs(θ;xi, xj ,Fs−1)− Ys)

2

∂θk

]
=

∂

∂θj

[
2(fIs(θ;xi, xj ,Fs−1)− Ys)

∂fIs(θ;xi, xj ,Fs−1)

∂θk

]

=
∂

∂θj

[
2fIs(θ;xi, xj ,Fs−1)

∂fIs(θ;xi, xj ,Fs−1)

∂θk
− 2Ys

∂fIs(θ;xi, xj ,Fs−1)

∂θk

]

= 2
∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk
+ 2fIs(θ;xi, xj ,Fs−1)

∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk

− 2Ys
∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk
− 2

∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂Ys

∂θk

= 2
∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk
+ 2

(
fIs(θ;xi, xj ,Fs−1)− Ys

) ∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk

The claim of the lemma follows.

Lemma B.5. Let the j-th row and k-th column entry in the Hessian matrix ∇2
θ=θ′(E[ℓs(θ)|Fs−1])

be denoted as [∇2
θ=θ′(E[ℓs(θ)|Fs−1])]jk. Then we have that

[
∇2

θ=θ′E[ℓs(θ)|Fs−1]
]
jk

= 2

|V |∑
i=1

pθ̂s−1
(i)

(
∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk

+2
(
fIs(θ;xi, xj ,Fs−1)− fIs(θ∗;xi, xj ,Fs−1)

) ∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk

)
.

Proof. This lemma follows from Frostig et al. [2015], Mukherjee et al. [2020] adapted to our setting
for the squared loss, transition function fIs(θ∗;xi, xj ,Fs−1), and the sampling distribution pθ̂s−1

.
We show it here for completeness. Now we want to evaluate the Hessian ∇2

θ=θ′(E[ℓs(θ)|Fs−1])
at any θ′ ∈ Θ. We denote the j-th row and k-th column entry in the Hessian matrix as
[∇2

θ=θ′(E[ℓs(θ)|Fs−1])]jk. Then we can show that

∇2
θ=θ′E[ℓs(θ)|Fs−1] = ∇2

θ=θ′

(
f2
Is(θ;xi, xj ,Fs−1) + E[Y 2

s |Fs−1]− 2E[Ys|Fs−1]fIs(θ;xi, xj ,Fs−1)
)

= ∇2
θ=θ′

|V |∑
i=1

pθ̂s−1
(i)

(
f2
i (θ;xi, xj ,Fs−1) + f2

i (θ
′;xi, xj ,Fs−1) +

1

2
− 2fIs(θ∗;xi, xj ,Fs−1)fIs(θ;xi, xj ,Fs−1)

)

= ∇2
θ=θ′

|V |∑
i=1

pθ̂s−1
(i)

((
fIs(θ∗;xi, xj ,Fs−1)− fIs(θ;xi, xj ,Fs−1)

)2
+

1

2

)

= ∇2
θ=θ′

|V |∑
i=1

pθ̂s−1
(i)

((
fIs(θ∗;xi, xj ,Fs−1)− fIs(θ;xi, xj ,Fs−1)

)2)
(6)

We now denote the j-th row and k-th column entry of the Hessian Matrix
∇2

θ=θ′((fIs(θ;xi, xj ,Fs−1) − fi(θ∗;xi, xj ,Fs−1))2) as
[
∇2

θ=θ′((fIs(θ;xi, xj ,Fs−1) −
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fIs(θ∗;xi, xj ,Fs−1))2)
]
jk

. Then we can show that

[
∇2

θ=θ∗
((fIs(θ;xi, xj ,Fs−1)− fIs(θ∗;xi, xj ,Fs−1))2)

]
jk

:=
∂

∂θj

[
∂(fIs(θ;xi, xj ,Fs−1)− fIs(θ∗;xi, xj ,Fs−1))2

∂θk

]

=
∂

∂θj

[
2(fIs(θ;xi, xj ,Fs−1)− fIs(θ∗;xi, xj ,Fs−1))

∂fIs(θ;xi, xj ,Fs−1)

∂θk

]

=
∂

∂θj

[
2fIs(θ;xi, xj ,Fs−1)

∂fIs(θ;xi, xj ,Fs−1)

∂θk
− 2fi(θ∗)

∂fIs(θ;xi, xj ,Fs−1)

∂θk

]

= 2
∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk
+ 2fIs(θ;xi, xj ,Fs−1)

∂2fIs(θ;xi, xj ,Fs−1)

∂θjθk

− 2fIs(θ∗;xi, xj ,Fs−1)
∂2fIs(θ;xi, xj ,Fs−1)

∂θjθk
− 2

∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ∗;xi, xj ,Fs−1)

∂θk

= 2
∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk
+ 2

(
fIs(θ;xi, xj ,Fs−1)− fIs(θ∗;xi, xj ,Fs−1)

) ∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk

Plugging this back in Equation (6) we get that

[
∇2

θ=θ′E[ℓs(θ)|Fs−1]
]
jk

= 2

|V |∑
i=1

pθ̂s−1
(i)

(
∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk

+2
(
fIs(θ;xi, xj ,Fs−1)− fIs(θ∗;xi, xj ,Fs−1)

) ∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk

)
.

Lemma B.6. The sum of the difference of the Hessians
∑t

s=1 ∇2
θ=θ′ℓs (θ) −

E
[
∇2

θ=θ′ℓs (θ) | Fs−1
]

is given by

t∑
s=1

∇2
θ=θ′ℓs (θ)− E

[
∇2

θ=θ′ℓs (θ) | Fs−1
]
=

t∑
s=1

(
− 2(Ys − fIs(θ;xi, xj ,Fs−1))

∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk

+ 2
∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk

− 2

|V |∑
i=1

pθ̂s−1
(i)

∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk

)
.
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Proof. This lemma directly follows from Lemma B.4 and Lemma B.5. First note that the difference
∇2

θ=θ′ℓs (θ)− E
[
∇2

θ=θ′ℓs (θ) | Fs−1
]
jk

is given by

∇2
θ=θ′ℓs (θ)− E

[
∇2

θ=θ′ℓs (θ) | Fs−1
]

(a)
= 2

∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk
+ 2

(
fIs(θ;xi, xj ,Fs−1)− Ys

) ∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk

− 2

|V |∑
i=1

pθ̂s−1
(i)

(
∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk
−
(
fIs(θ;xi, xj ,Fs−1)− fIs(θ∗;xi, xj ,Fs−1)

)
·

∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk

)
=− 2(Ys − fIs(θ;xi, xj ,Fs−1))

∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk
+ 2

∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk

− 2

|V |∑
i=1

pθ̂s−1
(i)

∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk
(7)

where, (a) follows from Lemma B.4 and Lemma B.5. Plugging this equality in Equation (7) below
we get

t∑
s=1

∇2
θ=θ′ℓs (θ)− E

[
∇2

θ=θ′ℓs (θ) | Fs−1
]

=

t∑
s=1

(
− 2(Ys − fIs(θ;xi, xj ,Fs−1))

∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk
+ 2

∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk

− 2

|V |∑
i=1

pθ̂s−1
(i)

(
∂fIs(θ;xi, xj ,Fs−1)

∂θj

∂fIs(θ;xi, xj ,Fs−1)

∂θk
− 2

(
fIs(θ;xi, xj ,Fs−1)− fIs(θ∗;xi, xj ,Fs−1)

)
·

∂2fIs(θ;xi, xj ,Fs−1)

∂θj∂θk

))
.

The claim of the lemma follows.

Lemma B.7. Let L̂t(θ∗) =
1
t

∑t
s=1 ℓs(θ∗) and ∇2Lt(θ∗) =

1
t

∑t
s=1 ∇2E[ℓs(θ∗)|Fs−1]. Then we

can bound the

P

(
λmax(∇2L̂t(θ∗)−∇2Lt(θ

∗)) >

√
8C|V |2η2λ2

1cγ log(dt)

t

)
≤ 2

(dt)γ
,

where c > 0 is a constant.

Proof. This lemma is different than Frostig et al. [2015], Mukherjee et al. [2020] as
it requires a different concentration bound to take into account the squared loss As-
sumption 5.2 and the vocabulary size. Recall that L̂t(θ∗) = 1

t

∑t
s=1 ℓs(θ∗) and

∇2Ls(θ
∗) = ∇2E[ℓs(θ∗)|Fs−1]. We define ∇2Lt(θ∗) = 1

t

∑t
s=1 ∇2E[ℓs(θ∗)|Fs−1].

Denote, Vs = 2∇θ=θ∗fIs(θ;xi, xj ,Fs−1)∇θ=θ∗fIs(θ;xi, xj ,Fs−1)⊤ −
2
∑|V |

i=1 pθ̂s−1
(i)∇θ=θ∗fIs(θ;xi, xj ,Fs−1)∇θ=θ∗fIs(θ;xi, xj ,Fs−1)⊤. Then we can show
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that,

P

(
λmax(∇2L̂t(θ∗)−∇2Lt(θ

∗)) >

√
8C2|V |4η2λ2

1cγ log(dt)

t

)

= P

λmax

∇2
θ=θ∗

1

t

t∑
s=1

ℓs(θ)−
1

t

t∑
s=1

∇2
θ=θ∗

E[ℓs(θ)|Fs−1]

 >

√
8C2|V |4η2λ2

1cγ log(dt)

t


= P

λmax

∇2
θ=θ∗

1

t

t∑
s=1

(
ℓs(θ)−∇2

θ=θ∗
E[ℓs(θ)|Fs−1]

) >

√
8C2|V |4η2λ2

1cγ log(dt)

t


(a)

≤ P

λmax

C|V |2

t

t∑
s=1

(
Ys − fIs(θ∗;xi, xj ,Fs−1)

)
∇2

θ=θ∗
fIs(θ∗;xi, xj ,Fs−1)

+
C|V |2

t

t∑
s=1

Vs

 >

√
8C2|V |4η2λ2

1cγ log(dt)

t


≤ P

λmax

1

t

t∑
s=1

−2
(
Ys − fIs(θ∗;xi, xj ,Fs−1)

)
∇2

θ=θ∗
fIs(θ∗;xi, xj ,Fs−1)

 >
1

2

√
8η2λ2

1cγ log(dt)

t


+ P

λmax

1

t

t∑
s=1

Vs

 >
1

2

√
8η2λ2

1cγ log(dt)

t


(b)

≤ P

1

t

t∑
s=1

−2
(
Ys − fIs(θ∗;xi, xj ,Fs−1)

)
λmax

(
∇2

θ=θ∗
fIs(θ∗;xi, xj ,Fs−1)

)
>

1

2

√
8η2λ2

1cγ log(dt)

t


+ P

1

t

t∑
s=1

λmax (Vs) >
1

2

√
8η2λ2

1cγ log(dt)

t


(c)

≤ 2 exp

(
− t28η2λ2

1cγ log(dt)

4t
· 1

2tcη2λ2
1

)
(d)

≤ 2

(
1

dt

)γ

. (8)

where, (a) follows from substituting the value of ∇2
θ=θ∗

ℓs(θ) − ∇2
θ=θ∗

E[ℓs(θ)|Fs−1] from
Lemma B.6, and (b) follows by triangle inequality, (c) follows by using two concentration inequalities
stated below, and (d) follows by simplifying the equations.
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Denote Qs = −2
(
Ys − fIs(θ∗;xi, xj ,Fs−1)

)
λmax

(
∇2

θ=θ∗
fIs(θ∗;xi, xj ,Fs−1)

)
. Also note that

λmax

(
∇2

θ=θ∗
fIs(θ∗;xi, xj ,Fs−1)

)
≤ λ1 for all time s using Assumption B.1.

P(
t∑

s=1

−2
(
Ys − fIs(θ∗;xi, xj ,Fs−1)

)
λmax

(
∇2

θ=θ∗
fIs(θ∗;xi, xj ,Fs−1)

)
≥ ϵ) = P

−
t∑

s=1

Qs ≥ ϵ


= P

(
e−λ

∑t
s=1 Qs ≥ eλϵ

) (a)

≤ e−λϵE
[
e−λ

∑t
s=1 Qs

]
= e−λϵE

[
E
[
e−λ

∑t
s=1 Qs

∣∣θ̂t−1

]]
(b)
= e−λϵE

[
E
[
e−λQt |θ̂t−1

]
E
[
e−λ

∑t−1
s=1 Qs

∣∣θ̂t−1

]]
≤ e−λϵE

[
exp

(
2λ2λ2

1η
2
)
E
[
e−λ

∑t−1
s=1 Qs

∣∣θ̂t−1

]]
= e−λϵe2λ

2η2λ2
1E
[
e−λ

∑t−1
s=1 Qs

]
...

(c)

≤ e−λϵe2λ
2tη2λ2

1

(d)

≤ exp

(
− 2ϵ2

tη2λ2
1

)
.

where (a) follows by Markov’s inequality, (b) follows as Qs is conditionally independent given θ̂s−1,
(c) follows by unpacking the term for t times and (d) follows by taking λ = ϵ/4tλ2

1η
2 where λ1 is

defined in Assumption 5.1. Next we bound the second term of (8) below.

P(
t∑

s=1

λmax (Vs) ≥ ϵ) = P

λ

t∑
s=1

λmax (Vs) ≥ λϵ

 = P
(
eλ

∑t
s=1 λmax(Vs) ≥ eλϵ

) (a)

≤ e−λϵE
[
eλ

∑t
s=1 λmax(Vs)

]
= e−λϵE

[
E
[
eλ

∑t
s=1 λmax(Vs)

∣∣θ̂t−1

]]
(b)
= e−λϵE

[
E
[
eλλmax(Vt)|θ̂t−1

]
E
[
eλ

∑t−1
s=1 λmax(Vs)

∣∣θ̂t−1

]]
(c)

≤ e−λϵE
[
exp

(
2cλ2λ2

1η
2
)
E
[
eλ

∑t−1
s=1 λmax(Vs)

∣∣θ̂t−1

]]
= e−λϵe2cλ

2η2λ2
1E
[
eλ

∑t−1
s=1 λmax(Vs)

]
...

(d)

≤ e−λϵe2cλ
2tη2λ2

1

(e)

≤ exp

(
− 2ϵ2

tcη2λ2
1

)

where (a) follows by Markov’s inequality, (b) follows as λmax(Vs) is conditionally indepen-
dent given θ̂s−1. In the inequality (c) using the always valid upper bound of 2λ1, we have that
E[λmax(Vt)] ≤ 2λ1. So the term in inequality (c) will become e−λϵe2λ

2tη2λt
1+4tλλ1 . Hence,

we can upper bound the inequality (c) by a constant c > 0 such that we have E[eλλmax(Vt) |
θ̂t−1] ≤ e2λ

2λ2
1η

2

e2λ×2λ1 = exp(2λ2λ2
1η

2 + 4λλ1) ≤ exp(2cλ2λ2
1η

2). The inequality (d) follows
by unpacking the term for t times and (e) follows by taking λ = ϵ/4tcλ2

1η
2 and λ1 defined in

Assumption 5.1.

Lemma B.8. Let θ̂t − θ∗ =
(
∇2L̂t(θ̃t)

)−1

∇L̂t(θ∗) where θ̃t is between θ̂t and θ∗. Then we can
show that∥∥∥θ̂t − θ∗

∥∥∥
∇2Lt(θ∗)

≤
∥∥∥∥(∇2Lt (θ∗)

)1/2 (
∇2L̂t(θ̃t)

)−1 (
∇2Lt (θ∗)

)1/2∥∥∥∥∥∥∥∇L̂t (θ∗)
∥∥∥
(∇2Lt(θ∗))

−1
.
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Proof. We begin with the definition of
∥∥∥θ̂t − θ∗

∥∥∥
∇2Lt(θ∗)

as follows:∥∥∥θ̂t − θ∗

∥∥∥
∇2Lt(θ∗)

(a)
=

√
(θ̂t − θ∗)T∇2Lt (θ∗) (θ̂t − θ∗)

(b)
=

√((
∇2L̂t(θ̃t)

)−1

∇L̂t (θ∗)

)T

∇2Lt (θ∗)

((
∇2L̂t(θ̃t)

)−1

∇L̂t (θ∗)

)
(c)

≤
∥∥∥∥∇2Lt (θ∗)

1/2
(
∇2L̂t(θ̃t)

)−1

∇2Lt (θ∗)
1/2

∥∥∥∥√(∇L̂t (θ∗)
T (∇2Lt(θ∗)

)−1 ∇L̂t (θ∗)
)

=

∥∥∥∥(∇2Lt (θ∗)
)1/2 (

∇2L̂t(θ̃t)
)−1 (

∇2Lt (θ∗)
)1/2∥∥∥∥∥∥∥∇L̂t (θ∗)

∥∥∥
(∇2Lt(θ∗))

−1
.

where, (a) follows as ∥x∥M =
√
xTMx, (b) follows as ∥θ̂t − θ∗∥∇2Lt(θ∗) =(

∇2L̂t(θ̃)
)−1

∇L̂t(θ∗), and (c) follows from Cauchy Schwarz inequality. The claim of the lemma
follows.

Remark B.9. The proof of Theorem 1 consists of several steps. In the first step we relate ∇2L̂t(θ)
to ∇2Lt(θ∗) for any θ in a ball B around θ∗. The ball B is assumed in Assumption B.1 to be a
neighborhood where ∇2ℓs(θ) satisfies a Lipschitz property. Assumption B.1 in Appendix B are
standard and have also been made by Frostig et al. [2015], Chaudhuri et al. [2015], Mukherjee
et al. [2020]. Using Assumption 5.1 and Assumption B.1, we can show that for a large enough
sequences of tokens t stated in Theorem 1 we have the following: (1) ∇2Lt(θ∗) lies between in the
positive semidefinite order by scaled multiples of ∇2L̂t(θ) for any θ ∈ B, and (2) the empirical
error minimizing θ̂t is in the ball B with probability 1 − 1/tγ , which is the good event E . Then
we use a Taylor series expansion around θ̂t and using the fact that ∇L̂t(θ̂(t)) = 0 along with the
relation between ∇2L̂t(θ) and ∇2Lt(θ∗), we can obtain an upper bound to ∥θ̂(t) − θ∗∥∇2Lt(θ∗)

in terms of ∥∇L̂t(θ∗)∥(∇2Lt(θ∗))−1 that can be shown to be decreasing with t. Further, ∥θ̂(t) −
θ∗∥∇2Lt(θ∗) can also be used to obtain an upper bound to Lt(θ̂(t))−Lt(θ∗) using a Taylor series
expansion. Finally we can bound E[Lt(θ̂t)− Lt(θ

∗)] = E[(Lt(θ̂t)− Lt(θ
∗))I(E)] + E[(Lt(θ̂t)−

Lt(θ
∗))I(E∁)] where I(·) is the indicator. Since P(E∁) ≤ 1/tγ , the second term can be bounded as

maxθ∈Θ

(
Lt(θ)− Lt (θ

∗)
)
/tγ , while the first term simplifies to (1 + ρt)σ

2
t /t.

Theorem 1. (Restatement of main theorem) Suppose ℓ1(θ), ℓ2(θ), · · · , ℓt(θ) : R|V | → R are
loss functions from a distribution that satisfies Assumptions 5.1 , 5.2, and B.1. Define Lt(θ) =
1
t

∑t
s=1 Exs∼p

θ̂s−1
[ℓs(θ)|Fs−1] where, θ̂t = argminθ∈Θ

∑t
s=1 ℓs(θ). If t is large enough such

that γ log(dt)
t ≤ c′ min

{
1

C1C2|V |4 ,
max
θ∈Θ

(Lt(θ)−Lt(θ∗))
C2

}
then for a constant γ ≥ 2, universal constants

C1, C2, c
′, we can show that

(1− ρt)
σ2
t

t
− C2

1

tγ/2
≤ E

[
Lt(θ̂t)− Lt (θ∗)

]
≤ (1 + ρt)

σ2
t

t
+
max
θ∈Θ

(
Lt(θ)−Lt (θ∗)

)
tγ

,

where σ2
t := E

[
1
2

∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1

]
, and ρt :=

(
C1C2 + 2η2λ2

1

)√γ log(dt)
t .

Proof. Step 1: We first bound the
∥∥∥∇2L̂t(θ)−∇2Lt (θ∗)

∥∥∥
∗

as follows∥∥∥∇2L̂t(θ)−∇2Lt (θ∗)
∥∥∥
∗

(a)

≤
∥∥∥∇2L̂t(θ)−∇2L̂t (θ∗)

∥∥∥
∗
+
∥∥∥∇2L̂t (θ∗)−∇2Lt (θ∗)

∥∥∥
∗

(b)

≤ C1 ∥θ − θ∗∥∇2Lt(θ∗)
+

√
8C2|V |4η2λ2

1cγ log(dt)

t
(9)

where, (a) follows from triangle inequality, and (b) is due to Assumption B.1.3.d and Lemma B.7.
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Step 2 (Approximation of ∇2Lt (θ∗)): By choosing a sufficiently smaller ball B1 of radius of
min

{
1/ (10C1) , diameter (B)

}
), the first term in (9) can be made small for θ ∈ B1. Also, for

sufficiently large t, the second term in (9) can be made arbitrarily small (smaller than 1/10 ), which

occurs if
√

γ log(dt)
t ≤ c′√

2C2|V |4η2λ2
1

. Hence for large t and θ ∈ B1 we have

1

2
∇2L̂t(θ) ⪯ ∇2Lt (θ∗) ⪯ 2∇2L̂t(θ) (10)

Step 3 (Show θ̂t in B1): Fix a θ̃ between θ and θ∗ in B1. Apply Taylor’s series approximation

L̂t(θ) = L̂t (θ∗) +∇L̂t (θ∗)
⊤
(θ − θ∗) +

1

2
(θ − θ∗)

⊤ ∇2L̂t(θ̃) (θ − θ∗)

We can further reduce this as follows:

L̂t(θ)− L̂t (θ∗)
(a)
= ∇L̂t (θ∗)

⊤
(θ − θ∗) +

1

2
∥θ − θ∗∥2∇2L̂t(θ̃)

(b)

≥ ∇L̂t (θ∗)
⊤
(θ − θ∗) +

1

4
∥θ − θ∗∥2∇2Lt(θ∗)

≥ −∥θ − θ∗∥∇2Lt(θ∗)

∥∥∥∇L̂t (θ∗)
∥∥∥
(∇2Lt(θ∗))

−1
+

1

4

(
∥θ − θ∗∥∇2Lt(θ∗)

)⊤ (
∥θ − θ∗∥∇2Lt(θ∗)

)
= ∥θ − θ∗∥∇2Lt(θ∗)

(
−
∥∥∥∇L̂t (θ∗)

∥∥∥
(∇2Lt(θ∗))

−1
+

1

4
∥θ − θ∗∥∇2Lt(θ∗)

)
(11)

where, (a) follows as ∥θ − θ∗∥2∇2L̂t(θ̃)
:= (θ − θ∗)

⊤ ∇2L̂t(θ̃) (θ − θ∗), and (b) follows as θ̃ is
in between θ and θ∗ and then using (10). Note that in (11) if the right hand side is positive for
some θ ∈ B1, then θ is not a local minimum. Also, since

∥∥∥∇L̂t (θ∗)
∥∥∥ → 0, for a sufficiently

small value of
∥∥∥∇L̂t (θ∗)

∥∥∥ , all points on the boundary of B1 will have values greater than that of

θ∗. Hence, we must have a local minimum of L̂t(θ) that is strictly inside B1 (for t large enough).
We can ensure this local minimum condition is achieved by choosing an t large enough so that√

γ log(dt)
t ≤ c′ min

{
1

C1C2
, diameter(B)

C2

}
, using Lemma B.3 (and our bound on the diameter of B1

). By convexity, we have that this is the global minimum, θ̂t, and so θ̂t ∈ B1 for t large enough. We
will assume now that t is this large from here on.

Step 4 (Bound
∥∥∥θ̂t − θ∗

∥∥∥
∇2Lt(θ∗)

): For the θ̂(t) that minimizes the sum of squared errors, 0 =

∇L̂t(θ̂t). Again, using Taylor’s theorem if θ̂t is an interior point, we have:

0 = ∇L̂t(θ̂t) = ∇L̂t (θ∗) +∇2L̂t(θ̃t)
(
θ̂t − θ∗

)
(12)

for some θ̃t between θ∗ and θ̂t. Now observe that θ̃t is in B1 (since, for t large enough, θ̂t ∈ B1 ).
Thus it follows from (12) that,

θ̂t − θ∗ =
(
∇2L̂t(θ̃t)

)−1

∇L̂t (θ∗) (13)

where the invertibility is guaranteed by (10) and the positive definiteness of ∇2Lt (θ∗) (by Assump-
tion B.1 (3c)). We finally derive the upper bound to

∥∥∥θ̂t − θ∗

∥∥∥
∇2Lt(θ∗)

as follows

∥∥∥θ̂t − θ∗

∥∥∥
∇2Lt(θ∗)

(a)

≤
∥∥∥∥(∇2Lt (θ∗)

)1/2 (
∇2L̂t(θ̃t)

)−1 (
∇2Lt (θ∗)

)1/2∥∥∥∥∥∥∥∇L̂t (θ∗)
∥∥∥
(∇2Lt(θ∗))

−1

(b)

≤ cC2

√
γ log(dt)

t
(14)
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where (a) follows from Lemma B.8, and (b) from Lemma B.3, (11), and c is some universal constant.

Step 5 (Introducing z̃): Fix a z̃t between θ∗ and θ̂t. Apply Taylor’s series

Lt(θ̂t)− Lt (θ∗) =
1

2

(
θ̂t − θ∗

)⊤
∇2Lt (z̃t)

(
θ̂t − θ∗

)
(15)

Now note that both θ̃t and z̃t are between θ̂t and θ∗, which implies θ̃t → θ∗ and z̃t → θ∗ since
θ̂t → θ∗. By (9) and (14) and applying the concentration inequalities give us∥∥∥∇2L̂t(θ̃t)−∇2Lt (θ∗)

∥∥∥
∗
≤ ρt (16)∥∥∥∇2Lt (z̃t)−∇2Lt (θ∗)

∥∥∥
∗
≤ C1 ∥z̃t − θ∗∥∇2Lt(θ∗)

≤ ρt (17)

where ρt = c
(
C1C2 + 2η2λ2

1

)√γ log(dt)
t .

Step 6 (Define M1,t and M2,t): It follows from the inequality (16) that

∇2L̂t(θ̃t) ⪯ (1 + ρt)∇2Lt (θ∗) =⇒ ∇2L̂t(θ̃t)−∇2Lt (θ∗) ⪯ ρt∇2Lt (θ∗)

=⇒ ∇2Lt (θ∗)
−1/2

(L̂t(θ̃t)−∇2Lt (θ∗))∇2Lt (θ∗)
−1/2 ⪯ ρtI

=⇒ ∥∇2L̂t(θ̃t)−∇2Lt (θ∗)∥∗ ≤ ρt.

Then we can use the inequalities (16) and (17) to show that

(1− ρt)∇2Lt (θ∗) ⪯ ∇2L̂t(θ̃t) ⪯ (1 + ρt)∇2Lt (θ∗)

(1− ρt)∇2Lt (θ∗) ⪯ ∇2Lt (z̃t) ⪯ (1 + ρt)∇2Lt (θ∗) .

Now we define the two quantities M1,t and M2,t as follows:

M1,t :=
(
∇2Lt (θ∗)

)1/2 (
∇2L̂t(θ̃t)

)−1 (
∇2Lt (θ∗)

)1/2
M2,t :=

(
∇2Lt (θ∗)

)−1/2

∇2Lt (z̃t)
(
∇2Lt (θ∗)

)−1/2

.

Step 7 (Lower bound Lt(θ̂t)− Lt (θ∗)): Now for the lower bound it follows from Equation (15)
that

Lt(θ̂t)− Lt (θ∗) =
1

2

(
θ̂t − θ∗

)⊤
∇2Lt (z̃t)

(
θ̂t − θ∗

)
=

1

2

(
θ̂t − θ∗

)⊤
∇2Lt(θ∗)

1
2∇2Lt(θ∗)

− 1
2∇2Lt (z̃t)∇2Lt(θ∗)

− 1
2∇2Lt(θ∗)

1
2

(
θ̂t − θ∗

)
(a)
=

1

2
uTM2,tu

where, in (a) we define the vector u :=
(
θ̂t − θ∗

)⊤
∇2Lt(θ∗)

1
2 . Now observe from the definition

of and then using the min-max theorem we can show that

Lt(θ̂t)− Lt (θ∗) ≥
1

2
λmin

(
M2,t

)
uTu

=
1

2
λmin

(
M2,t

) ∥∥∥θ̂t − θ∗

∥∥∥2
∇2Lt(θ∗)

=
1

2
λmin

(
M2,t

) ∥∥∥∥∇2L̂t(θ̃t)
(
θ̂t − θ∗

)∥∥∥∥2(
∇2L̂t(θ̃t)

)−1
∇2Lt(θ∗)

(
∇2L̂t(θ̃t)

)−1

≥ 1

2

(
λmin

(
M1,t

))2
λmin

(
M2,t

) ∥∥∥∥∇2L̂t(θ̃t)
(
θ̂t − θ∗

)∥∥∥∥2
(∇2Lt(θ∗))

−1

(a)
=

1

2

(
λmin

(
M1,t

))2
λmin

(
M2,t

) ∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1
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where, in (a) we use the Equation (13).

Step 8: Define I(E) as the indicator that the desired previous events hold, which we can ensure with

probability greater than 1− 2

(
1

dt

)γ

. Then we can show that:

E
[
Lt(θ̂t)− Lt (θ∗)

]
≥E

[(
Lt(θ̂t)− Lt (θ∗)

)
I(E)

]
≥1

2
E

[(
λmin

(
M1,t

))2
λmin

(
M2,t

) ∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1
I(E)

]

≥
(
1− c′ρt

) 1
2
E

[∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1
I(E)

]

=
(
1− c′ρt

) 1
2
E

[∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1
(1− I(not E))

]

(a)
=
(
1− c′ρt

)σ2
t −

1

2
E

[∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1
I(not E)

]
≥
(
1− c′ρt

)
σ2
t − E

[∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1
I(not E)

]

where, in (a) we have σ2
t :=

∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1
, and c′ is an universal constant.

Step 9: Define the random variable Z =
∥∥∥∇L̂t (θ∗)

∥∥∥
(∇2Lt(θ∗))

−1
. With a failure event probability

of less than 2

(
1

dt

)γ

for any z0, we have:

E
[
Z2I(not E)

]
= E

[
Z2I(not E)I

(
Z2 < z0

)]
+ E

[
Z2I(not E)I

(
Z2 ≥ z0

)]
≤ z0E[I(not E)] + E

[
Z2I

(
Z2 ≥ z0

)]
≤ z0

2tγ
+ E

[
Z2Z

2

z0

]

≤ z0
2tγ

+
E
[
Z4
]

z0

≤
√
E [Z4]

tγ/2

where z0 = tγ/2
√
E [Z4].

Step 10 (Upper Bound): For an upper bound we have that:

E
[
Lt(θ̂t)− Lt (θ∗)

]
= E

[(
Lt(θ̂t)− Lt (θ∗)

)
I(E)

]
+ E

[(
Lt(θ̂t)− Lt (θ∗)

)
I(not E)

]
≤ E

[(
Lt(θ̂t)− Lt (θ∗)

)
I(E)

]
+

maxθ∈Θ

(
Lt(θ)− Lt (θ∗)

)
tγ
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since the probability of not E is less than
1

tγ
. Now for an upper bound of the first term, observe that

E
[(

Lt(θ̂t)− Lt (θ∗)
)
I(E)

]
≤1

2
E

[(
λmax

(
M1,t

))2
λmax

(
M2,t

) ∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1
I(E)

]

≤
(
1 + c′ρt

) 1
2
E

[∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1
I(E)

]

≤
(
1 + c′ρt

) 1
2
E

[∥∥∥∇L̂t (θ∗)
∥∥∥2
(∇2Lt(θ∗))

−1

]

=
(
1 + c′ρt

) σ2
t

t

where, c′ is another universal constant.

C Experimental Details

C.1 Dataset Statistics

We provide the processed data statistics in Table 5. We would like to highlight that due to the
black-box assumption of the base model, the training set is merely used for ablation and qualitative
analysis in Section 7.2 and Section 7.3.

Table 5: Processed Dataset Statistics. Training set is only used for ablation and qualitative analysis
due to the black-box model assumption.

Dataset Train Validation Test
E2E NLG 33,525 4,299 4,693
Web NLG 2,732 (filtered by categories) 844 720
CommonGen 1,476 (filtered for “man”) 2,026 1,992
Adidas — 745 100

C.2 Prompts

We now describe the prompts we used for the four datasets and three models.

E2E NLG Dataset

• For the GPT2-M model, we use the prompt:

Given the following aspects of a restaurant, [attributes], a
natural language sentence describing the restaurant is:

• For the GPT2-XL model, the prompt is:

Imagine you are writing a one-sentence description for a
restaurant, given the following aspects: [attributes], a
human-readable natural language sentence describing the
restaurant is:

• For the LLaMA-3.1-8B model, we use:

Please convert the following attributes into a coherent sentence.
Do not provide an explanation.

Web NLG Dataset

• For the GPT2-M model, we use the prompt:
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Table 6: Performance comparison on E2E NLG dataset. The base model is GPT2-M. We show mean
and standard deviation of the metrics over five seeds.

Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST
GPT2-M Zeroshot 0.0247 0.3539 0.1003 0.2250 0.3015 0.0156 0.6133
GPT2-M ICL-1 0.0543±0.026 0.3431±0.048 0.1299±0.033 0.2280±0.047 0.3434±0.051 0.0260±0.042 0.7767±0.060

GPT2-M ICL-3 0.0750±0.035 0.3955±0.028 0.1676±0.020 0.2649±0.052 0.3977±0.063 0.0252±0.049 0.8993±0.076

GPT2-M NewModel 0.2377±0.011 0.5049±0.014 0.2742±0.013 0.3902±0.006 0.4521±0.016 0.3938±0.019 1.1927±0.069

GPT2-M WeightedComb 0.1709±0.008 0.4817±0.020 0.2447±0.011 0.3720±0.014 0.4071±0.025 0.3329±0.027 1.0864±0.002

GPT2-M Plugin (Ours) 0.1863±0.010 0.5227±0.011 0.2612±0.013 0.3728±0.003 0.4857±0.012 0.3544±0.013 1.1241±0.009

Convert the following facts into a coherent sentence: Facts:
[facts] Sentence:

• For the GPT2-XL model, the prompt is:

You are given the following facts. Facts: [facts] A short,
coherent sentence summarizing the facts is:

• For the LLaMA-3.1-8B model, we use:

Do not provide an explanation or follow-up. Just convert the
following facts of an entity into a coherent sentence. Facts:
[facts] Sentence:

CommonGen Dataset

• For the GPT2-M and GPT2-XL models, we use the same prompt:

One coherent sentence that uses all the following concepts:
[concepts], is:

• For the LLaMA-3.1-8B model, we use:

Please write a coherent sentence that uses all the following
concepts. Concepts: [concepts] Sentence:

Adidas Dataset

• For the GPT2-M and GPT2-XL models, we use the same prompt:

Given the following attributes of a product, write a description.
Attributes: [attributes] Description:

• For the LLaMA-3.1-8B model, we use:

Please write a description of this product given the following
attributes. Attributes: [attributes] Description:

For in-context learning, we simply add a sentence at the beginning of the prompt before offering the
samples: Below are a list of demonstrations: .

For the qualitative analysis on the distribution shift in Section 7.3, we ask GPT-4o with the following
prompt:
For Web NLG dataset:

Focus on all the samples, how much percentage is related to “Person”?

For CommonGen dataset:
Focus on those samples whose target is related to gender, how much
percentage is related to “woman”?

C.3 Metrics

We report performance using seven standard metrics often used in the natural language generation
tasks. These are: (a) BLEU [Papineni et al., 2002] (measures n-gram overlap between the generated
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Table 7: Performance comparison on Web NLG dataset. The base model is GPT2-M. We show mean
and standard deviation of the metrics over five seeds.

Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST
GPT2-M Zeroshot 0.0213 0.2765 0.1014 0.1872 0.2111 0.0479 0.2340
GPT2-M ICL-1 0.0317±0.013 0.3388±0.021 0.1318±0.013 0.2346±0.019 0.2876±0.042 0.0732±0.053 0.2715±0.042

GPT2-M ICL-3 0.0461±0.014 0.3388±0.018 0.1378±0.016 0.2291±0.010 0.3408±0.027 0.0748±0.031 0.3283±0.037

GPT2-M NewModel 0.1071±0.005 0.3260±0.010 0.1496±0.014 0.2724±0.013 0.2642±0.008 0.4327±0.023 0.2916±0.031

GPT2-M WeightedComb 0.0692±0.007 0.3593±0.010 0.1568±0.008 0.2834±0.015 0.2379±0.030 0.1916±0.028 0.2996±0.037

GPT2-M Plugin (Ours) 0.1280±0.007 0.4590±0.005 0.2226±0.005 0.3515±0.006 0.3832±0.010 0.7280±0.039 0.3060±0.017

Table 8: Performance comparison on CommonGen dataset. The base model is GPT2-M. We show
mean and standard deviation of the metrics over five seeds.

Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST
GPT2-M Zeroshot 0.0153 0.2216 0.0409 0.1527 0.2848 0.0001 0.3686
GPT2-M ICL-1 0.0157±0.013 0.2580±0.024 0.0362±0.096 0.1388±0.102 0.2871±0.107 0.0222±0.076 0.3704±0.101

GPT2-M ICL-3 0.0552±0.010 0.3610±0.019 0.1248±0.045 0.2680±0.089 0.4079±0.133 0.1366±0.125 0.5340±0.087

GPT2-M NewModel 0.1260±0.007 0.4106±0.016 0.1683±0.013 0.3740±0.009 0.3600±0.024 0.4570±0.058 0.7113±0.025

GPT2-M WeightedComb 0.0567±0.005 0.3918±0.010 0.1353±0.005 0.3280±0.010 0.2929±0.016 0.2623±0.042 0.4353±0.028

GPT2-M Plugin (Ours) 0.1366±0.003 0.4533±0.007 0.1878±0.003 0.3934±0.006 0.4095±0.011 0.5572±0.022 0.6395±0.061

and reference texts, emphasizing precision), (b) ROUGE-1 [Lin, 2004] (computes unigram recall
to measure the overlap between generated and reference texts), (c) ROUGE-2 [Lin, 2004] (extends
ROUGE-1 to bigrams, measuring the recall of two-word sequences), (d) ROUGE-L [Lin and Och,
2004] (uses the longest common subsequence to evaluate recall), (e) METEOR [Banerjee and
Lavie, 2005] (combines unigram precision, recall, and semantic matching to assess similarity), (f)
CIDEr [Vedantam et al., 2015] (measures consensus in n-gram usage across multiple references, with
tf-idf weighting), and (g) NIST [Doddington, 2002] (similar to BLEU but weights n-grams by their
informativeness, favoring less frequent and meaningful phrases).

C.4 Additional Results when using GPT2-M as the Base Model

Due to page limit, we move the results of using the base model as GPT2-M here in Appendix. In
Table 6, 7, 8, and 9, we observe the similar trend that Plugin generally performs the best. Only on
E2E NLG that NewModel performs better, likely due to the GPT2-M model on this dataset providing
too noisy predictions, and it is better to learn a new language model.

C.5 Further Quantitative Analysis and Ablation

Following Section 7.2, we now display the same analysis of GPT2-M on the other three datasets.

As shown in Figure 5, we observe the similar trend as that in Figure 2, that the Plugin model
consistently improves across all settings as the base model becomes stronger with additional fine-
tuning, approving the robustness and versatility of our approach.

As shown in Figure 6, we also observe the similar trend as that in Figure 3. A single-layer reweighting
model achieves the best performance, while adding more layers leads to overfitting, causing a decline
in performance. Consistently, initializing the reweighting model with a pretrained GPT2-Small
significantly enhances performance.

C.6 Influence of the architecture of the reweighting model in Plugin

We ablate the choice of the reweighting model architecture. We find that a causal transformer layer
identical to those used in the base model performs best, as it can leverage the base model’s logits
and aggregate contextual information from prior tokens to better adapt the base model to the new
data distribution. This conclusion is reinforced by Figure 7, where the transformer architecture
consistently outperforms both the MLP (two layer with ReLU activation) and linear layers across all
metrics, as indicated by higher means and narrower standard deviation bands. These results highlight
the importance of leveraging the architectural capacity of transformers to effectively adapt the logits
of the base black-box model.
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Figure 5: Performance of applying a single-layer reweighting model across increasingly fine-tuned
GPT2-M models on the three datasets. Results demonstrate consistent improvements introduced by
our method regardless of the strength of the base model.
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Figure 6: Performance of GPT2-M with varying reweighting model complexities on the three
datasets, measured by BLEU and Rouge-L. Results demonstrate that a single reweighting layer
achieves significant improvements, while increasing the number of layers beyond this leads to
performance degradation, likely due to overfitting. Using a pretrained GPT2-Small as the reweighting
model largely boosts the performance, highlighting the benefits of leveraging pretrained models.
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Table 9: Performance comparison on Adidas dataset. The base model is GPT2-M. We show mean
and standard deviation of the metrics over five seeds.

Model Method BLEU Rouge-1 Rouge-2 Rouge-L METEOR CIDEr NIST
GPT2-M Zeroshot 0.0046 0.2488 0.0189 0.1353 0.1653 0.0312 0.6860
GPT2-M ICL-1 0.0088±0.054 0.2667±0.047 0.0247±0.66 0.1358±0.041 0.1762±0.028 0.0464±0.089 0.6793±0.078

GPT2-M ICL-3 0.0121±0.047 0.2693±0.028 0.0262±0.054 0.1470±0.020 0.1806±0.030 0.0415±0.104 0.7037±0.081

GPT2-M NewModel 0.0515±0.016 0.2690±0.014 0.0637±0.014 0.1697±0.008 0.1918±0.013 0.0550±0.086 0.6682±0.047

GPT2-M WeightedComb 0.0565±0.014 0.2630±0.028 0.0495±0.018 0.1565±0.015 0.1938±0.019 0.0585±0.088 0.6456±0.156

GPT2-M Plugin (Ours) 0.0486±0.006 0.2766±0.002 0.0515±0.007 0.1684±0.005 0.1994±0.004 0.0626±0.017 0.7919±0.024
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Figure 7: Performance comparison of the weighting model architecture in Plugin. The transformer
layer achieves the best performance with consistently higher means and narrower standard deviations.
Shaded bands represent the standard deviation around the mean.

C.7 Details for Adidas Qualitative Studies

Human Evaluation. We finally conduct a human evaluation on 100 test passages from the Adidas
product dataset, comparing outputs generated with and without applying the reweighting model, using
LLaMA-3.1-8B as the base model. Three human evaluators are presented with a ground-truth Adidas
product description and two randomly ordered descriptions: one generated with the reweighting
layer and one without (i.e., we use the base model with ICL-3 as a much stronger baseline due to the
low quality of the zero-shot). Evaluators are prompted to select the prediction closest to the ground
truth. Results show that the output generated with the reweighting model is preferred on an average
of 80.7 out of all 100 cases. The output descriptions from the base model without the reweighting
are generally short and general; see details in Appendix C.7. This demonstrates that our approach
effectively adapts a closed model to the unique style of the given dataset.

In this section, we display some details for the qualitative analysis on the Adidas product description
dataset.

Details of Extracting Adidas Style Words. We discuss the details on extracting the most frequent
50 words in the Adidas product description dataset as the “Adidas style” words. We argue that there
does not exist a gold-standard way to define the “style” words for a dataset. We extract these style
words through a minimal preprocessing pipeline: converting text to lowercase, removing special
characters and numbers, and filtering out common English stopwords. We deliberately preserve
the original word forms without lemmatization or stemming to maintain distinct style markers (e.g.,
keeping “comfortable” distinct from “comfort”, “running” distinct from “run”). After tokenization
using NLTK’s word tokenizer, we count word frequencies across all product descriptions and select
the top 50 most frequent words. This approach captures the exact vocabulary used in Adidas’ product
descriptions, including specific product features.

A statistics of the frequency of these top-50 words is shown in Figure 8.

Case Studies for Human Side-by-side Evaluation. Below we provide more case studies on the
Adidas product description datasets. We display the given product attributes, base model’s zero-shot
outputs, base model with ICL-3’s outputs, Plugin model’s outputs, and the ground-truth references
for each case.

♣ Case 1
Given Product Attributes:
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Figure 8: Word Frequency of the Top-50 Words in Adidas Dataset.

- name [Cushioned Angle Stripe Low-Cut Socks 6 Pairs]
- category [Accessories]
- price [13]
- color [Multicolor]

Base Model (Zero-shot): Cushioned Angle Stripe Low-Cut Socks 6 Pairs, Multicolor.

Base Model (ICL-3): These adidas socks are made with a cushioned sole for extra comfort and
support. The low-cut design is perfect for everyday wear, whether you’re running errands or
hitting the gym.

Plugin Model: Cushioned Angle Stripe Low-Cut Socks 6 Pairs are the perfect blend of style
and comfort. The low-cut design gives you a sleek, modern look while still providing plenty of
support for your feet. Made with high-quality materials, these socks will keep your feet feeling
comfortable and looking chic all day long.

Ground-truth Reference: With lots of cushioning in the heel and toe and a soft, stretchy feel,
these kids’ socks are big on comfort. Whether they’re bouncing around between classes, practice
or after-school activities, their little feet will stay dry thanks to moisture-wicking yarn and a
mesh upper. An adidas Badge of Sport and 3-Stripes give the socks a classic adidas feel.

♠ Case 2
Given Product Attributes:

- name [Badge of Sport Tee]
- category [Clothing]
- price [21]
- color [Grey]

Base Model (Zero-shot): A white t-shirt with a badge of the sport you love on it.

Base Model (ICL-3): The adidas Badge of Sport tee is a classic. It’s made with soft cotton and
features the iconic 3-Stripes on the shoulders. The crew neck has a ribbed hem for a comfortable
fit.

Plugin Model: There’s nothing more classic than a white tee with your favorite team’s logo.
This adidas Badge of Sport Tee is an everyday essential that can be worn to the gym or on game

32



days. It’s made with recycled materials, so you’re making a sustainable choice. The soft cotton
jersey is lightweight, breathable, and comfortable.

Ground-truth Reference: Put your brand pride on full display. A simple yet versatile look, this
long sleeve t-shirt keeps you comfortable while on the move or lounging at home. A contrast
adidas Badge of Sport stands out on the chest. This product is made with Primegreen, a series of
high-performance recycled materials.

♦ Case 3
Given Product Attributes:

- name [Stretch Cotton Trunk Briefs 3 Pairs]
- category [Clothing]
- price [21]
- color [Grey]

Base Model (Zero-shot): Stretch Cotton Trunk Briefs 3 Pairs, Grey.

Base Model (ICL-3): These adidas men’s trunks are made from a soft cotton blend that feels
great against the skin. The stretchy fabric moves with you, while the flatlock seams prevent
chafing and irritation. A drawcord waistband allows for an adjustable fit.

Plugin Model: Stretch Cotton Trunk Briefs 3 Pairs. The stretch cotton fabric is comfortable
to wear. These briefs are made with a classic design in mind, so you can feel confident and
comfortable. They have been designed with a low waist, which gives them a flattering fit and
makes them easy to get on.

Ground-truth Reference: Just look at these adidas boxer briefs. They’re made with soft,
quick-dry fabric that keeps you feeling fresh and a stay-put design that keeps you covered from
your first rep to your last. Get comfortable and give it your all. Our cotton products support
sustainable cotton farming. This is part of our ambition to end plastic waste.

♥ Case 4
Given Product Attributes:

- name [adidas x Zoe Saldana Long Sleeve Tee]
- category [Clothing]
- price [28]
- color [Black]

Base Model (Zero-shot): This is a long sleeve tee with the adidas logo on the front and Zoe
Saldana’s name on the back. It has a crew neck, short sleeves, and a straight hem. The fabric is
made of 100% cotton and is machine washable.

Base Model (ICL-3): This adidas x Zoe Saldana long sleeve tee is made with 100% recycled
polyester. The soft, lightweight fabric has a smooth finish and features a crew neck and short
sleeves. It’s finished with an adidas logo on the chest.

Plugin Model: This is not your average training t-shirt. A modern, slim fit and the softest fabric
make it one of our most comfortable tops to date. The lightweight feel makes this tee perfect for
all-day wear. Pair it with a pair of leggings or joggers for that ultimate athleisure look you’re
always striving for ambition and comfort.

Ground-truth Reference: Your growth, your goals and the challenges you face along the way
are all part of your journey. This adidas tee was created in collaboration with Zoe Saldana to
inspire you to move with confidence, no matter where you are on your path. Smooth material
lays softly on your body so you can feel comfortable in your own skin. A solid color offers
styling versatility. This product is made with recycled content as part of our ambition to end
plastic waste.
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